Spaces:
Sleeping
Sleeping
Deploy WhisperX service
Browse files- app.py +110 -0
- packages.txt +1 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import whisperx
|
| 5 |
+
import torch
|
| 6 |
+
import tempfile
|
| 7 |
+
import os
|
| 8 |
+
import uvicorn
|
| 9 |
+
from threading import Thread
|
| 10 |
+
|
| 11 |
+
# Device setup
|
| 12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
compute_type = "float16" if device == "cuda" else "int8"
|
| 14 |
+
|
| 15 |
+
print(f"π Device: {device}, Compute: {compute_type}")
|
| 16 |
+
|
| 17 |
+
# Create FastAPI app
|
| 18 |
+
app = FastAPI(title="WhisperX Alignment API")
|
| 19 |
+
|
| 20 |
+
def process_audio(audio_path: str, language: str = "en"):
|
| 21 |
+
"""Core alignment logic"""
|
| 22 |
+
try:
|
| 23 |
+
print(f"π Processing {audio_path} ({language})...")
|
| 24 |
+
|
| 25 |
+
# Load model
|
| 26 |
+
model = whisperx.load_model("base", device=device, compute_type=compute_type)
|
| 27 |
+
|
| 28 |
+
# Transcribe
|
| 29 |
+
result = model.transcribe(audio_path, language=language)
|
| 30 |
+
|
| 31 |
+
# Align
|
| 32 |
+
align_model, metadata = whisperx.load_align_model(language_code=language, device=device)
|
| 33 |
+
aligned = whisperx.align(result["segments"], align_model, metadata, audio_path, device=device)
|
| 34 |
+
|
| 35 |
+
# Extract word segments
|
| 36 |
+
word_segments = []
|
| 37 |
+
for segment in aligned["segments"]:
|
| 38 |
+
for word in segment.get("words", []):
|
| 39 |
+
word_segments.append({
|
| 40 |
+
"word": word["word"].strip(),
|
| 41 |
+
"start": round(word["start"], 2),
|
| 42 |
+
"end": round(word["end"], 2)
|
| 43 |
+
})
|
| 44 |
+
|
| 45 |
+
duration = aligned["segments"][-1]["end"] if aligned["segments"] else 0
|
| 46 |
+
|
| 47 |
+
return {
|
| 48 |
+
"word_segments": word_segments,
|
| 49 |
+
"duration": round(duration, 2),
|
| 50 |
+
"word_count": len(word_segments),
|
| 51 |
+
"language": language,
|
| 52 |
+
"device": device
|
| 53 |
+
}
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"β Error: {e}")
|
| 56 |
+
return {"error": str(e)}
|
| 57 |
+
|
| 58 |
+
# FastAPI endpoint
|
| 59 |
+
@app.post("/align")
|
| 60 |
+
async def align_audio_api(
|
| 61 |
+
audio_file: UploadFile = File(...),
|
| 62 |
+
language: str = Form("en")
|
| 63 |
+
):
|
| 64 |
+
"""REST API endpoint for audio alignment"""
|
| 65 |
+
temp_path = None
|
| 66 |
+
try:
|
| 67 |
+
# Save temp file
|
| 68 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as tmp:
|
| 69 |
+
content = await audio_file.read()
|
| 70 |
+
tmp.write(content)
|
| 71 |
+
temp_path = tmp.name
|
| 72 |
+
|
| 73 |
+
# Process
|
| 74 |
+
result = process_audio(temp_path, language)
|
| 75 |
+
return JSONResponse(result)
|
| 76 |
+
|
| 77 |
+
finally:
|
| 78 |
+
if temp_path and os.path.exists(temp_path):
|
| 79 |
+
os.unlink(temp_path)
|
| 80 |
+
|
| 81 |
+
@app.get("/")
|
| 82 |
+
def health():
|
| 83 |
+
return {"status": "healthy", "device": device}
|
| 84 |
+
|
| 85 |
+
# Gradio interface
|
| 86 |
+
def align_gradio(audio_file, language="en"):
|
| 87 |
+
"""Gradio UI wrapper"""
|
| 88 |
+
if not audio_file:
|
| 89 |
+
return {"error": "No file"}
|
| 90 |
+
return process_audio(audio_file, language)
|
| 91 |
+
|
| 92 |
+
gradio_app = gr.Interface(
|
| 93 |
+
fn=align_gradio,
|
| 94 |
+
inputs=[
|
| 95 |
+
gr.Audio(type="filepath", label="Audio"),
|
| 96 |
+
gr.Textbox(value="en", label="Language")
|
| 97 |
+
],
|
| 98 |
+
outputs=gr.JSON(label="Result"),
|
| 99 |
+
title="π― WhisperX Alignment",
|
| 100 |
+
description="Upload audio for word-level timestamps"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Mount Gradio to FastAPI
|
| 104 |
+
app = gr.mount_gradio_app(app, gradio_app, path="/")
|
| 105 |
+
|
| 106 |
+
# Launch
|
| 107 |
+
if __name__ == "__main__":
|
| 108 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 109 |
+
|
| 110 |
+
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/m-bain/whisperx.git
|
| 2 |
+
fastapi
|
| 3 |
+
uvicorn[standard]
|
| 4 |
+
python-multipart
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|