Spaces:
Sleeping
Sleeping
| from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
| import datetime | |
| import requests | |
| import pytz | |
| import yaml | |
| from tools.final_answer import FinalAnswerTool | |
| from Gradio_UI import GradioUI | |
| from bs4 import BeautifulSoup | |
| import arxiv | |
| from PyPDF2 import PdfReader | |
| from xml.etree import ElementTree | |
| import io | |
| # Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
| def get_top_paper()-> str: | |
| """A tool that fetches the most upvoted paper on Hugging Face daily papers. | |
| """ | |
| url = "https://huggingface.co/papers" | |
| try: | |
| res = requests.get(url) | |
| res.raise_for_status() | |
| # Parse the HTML response | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| #inspect h3 the selector | |
| top_paper = soup.find("h3") | |
| if top_paper_element: | |
| return top_paper.text.strip() | |
| else: | |
| return "Paper not found" | |
| except Exception as e: | |
| return f"Error fetching top paper: {str(e)}" | |
| def get_paper_link(title:str)->str: | |
| """ | |
| A Tool that finds the Hugging Face paper link given its title. | |
| Args: | |
| title: A string representing the title of the paper (eg., 'Competitive Programming with Large Reasoning Models'). | |
| """ | |
| url = "https://huggingface.co/papers" | |
| try: | |
| res = requests.get(url) | |
| res.raise_for_status() | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| paper_links = soup.find("h3") | |
| for paper in paper_links: | |
| if paper.text.strip() == title: | |
| return "https://huggingface.co" + paper["href"] | |
| return "Paper link not found." | |
| except Exception as e: | |
| return f"Error fetching paper link: {str(e)}" | |
| def get_paper_content(link:str)->str: | |
| """ | |
| A tool that reads the first four pages of a paper and returns its content as a string given its link. | |
| Args: | |
| link: A string representing the URL of the paper (eg., 'https://huggingface.co/papers/2502.06807'). | |
| """ | |
| try: | |
| #Get the id from the Hugging face URL | |
| paper_id = link.split("/papers/")[-1] | |
| paper = next(arxiv.Client().results(arxiv.Search(id_list=[paper_id]))) | |
| #Get the PDF URL of the paper from arXiv | |
| pdf_url = paper.entry_id.replace("abs", "pdf") + ".pdf" | |
| response = requests.get(pdf_url) | |
| response.raise_for_status() | |
| pdf_buffer = io.BytesIO(response.content) | |
| # Extract text from the first four pages | |
| content = "" | |
| reader = PdfReader(pdf_buffer) | |
| pages = reader.pages[:4] | |
| for page in pages: | |
| content += page.extract_text() or "" | |
| return content.strip() | |
| except Exception as e: | |
| return f"Error reading paper: {str(e)}" | |
| def get_related_papers(title:str, max_results:int)->list: | |
| """ | |
| A tool that searches for related papers on arXiv based on the title of the query paper. | |
| Args: | |
| title: A string representing the title of the query paper to find related papers for. | |
| max_results: A integer representing the number of related papers to return. | |
| Returns: | |
| list: A list of dictionaries, each containing a related paper's title and URL. | |
| """ | |
| try: | |
| search_url = f"http://export.arxiv.org/api/query?search_query=title:{title}&start=0&max_results={max_results}" | |
| resp = requests.get(search_url) | |
| if resp.status_code != 200: | |
| return f"Error: Failed to retrieve papers from arXiv. Status code: {response.status_code}" | |
| root = ElementTree.fromstring(resp.text) | |
| papers = [] | |
| for entry in root.findall("{http://www.w3.org/2005/Atom}entry"): | |
| paper_title = entry.find("{http://www.w3.org/2005/Atom}title").text | |
| paper_url = entry.find("{http://www.w3.org/2005/Atom}id").text | |
| papers.append({"title": paper_title, "url": paper_url}) | |
| return papers | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| final_answer = FinalAnswerTool() | |
| model = HfApiModel( | |
| max_tokens=2096, | |
| temperature=0.5, | |
| model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud', | |
| custom_role_conversions=None, | |
| ) | |
| with open("prompts.yaml", 'r') as stream: | |
| prompt_templates = yaml.safe_load(stream) | |
| agent = CodeAgent( | |
| model=model, | |
| tools=[final_answer,get_top_paper,get_paper_link,get_paper_content,get_related_papers], ## add your tools here (don't remove final answer) | |
| max_steps=6, | |
| verbosity_level=1, | |
| grammar=None, | |
| planning_interval=None, | |
| name=None, | |
| description=None, | |
| prompt_templates=prompt_templates | |
| ) | |
| GradioUI(agent).launch() |