File size: 11,027 Bytes
c28dddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
from scipy.optimize import linear_sum_assignment


def get_base_part_idx(obj_dict):
    """
    Get the index of the base part in the object dictionary\n

    - obj_dict: the object dictionary\n

    Return:\n
    - base_part_idx: the index of the base part
    """

    # Adjust for NAP's corner case
    base_part_ids = np.where(
        [part["parent"] == -1 for part in obj_dict["diffuse_tree"]]
    )[0]
    if len(base_part_ids) > 0:
        return base_part_ids[0].item()
    else:
        raise ValueError("No base part found")


def get_bbox_vertices(obj_dict, part_idx):
    """
    Get the 8 vertices of the bounding box\n
    The order of the vertices is the same as the order that pytorch3d.ops.box3d_overlap expects\n
    (This order is not necessary since we are not using pytorch3d.ops.box3d_overlap anymore)\n

    - bbox_center: the center of the bounding box in the form: [cx, cy, cz]\n
    - bbox_size: the size of the bounding box in the form: [lx, ly, lz]\n

    Return:\n
    - bbox_vertices: the 8 vertices of the bounding box in the form: [[x0, y0, z0], [x1, y1, z1], ...]
    """

    part = obj_dict["diffuse_tree"][part_idx]
    bbox_center = np.array(part["aabb"]["center"], dtype=np.float32)
    bbox_size_half = np.array(part["aabb"]["size"], dtype=np.float32) / 2

    bbox_vertices = np.zeros((8, 3), dtype=np.float32)

    # Get the 8 vertices of the bounding box in the order that pytorch3d.ops.box3d_overlap expects:
    # 0: (x0, y0, z0)    # 1: (x1, y0, z0)    # 2: (x1, y1, z0)    # 3: (x0, y1, z0)
    # 4: (x0, y0, z1)    # 5: (x1, y0, z1)    # 6: (x1, y1, z1)    # 7: (x0, y1, z1)
    bbox_vertices[0, :] = bbox_center - bbox_size_half
    bbox_vertices[1, :] = bbox_center + np.array(
        [bbox_size_half[0], -bbox_size_half[1], -bbox_size_half[2]], dtype=np.float32
    )
    bbox_vertices[2, :] = bbox_center + np.array(
        [bbox_size_half[0], bbox_size_half[1], -bbox_size_half[2]], dtype=np.float32
    )
    bbox_vertices[3, :] = bbox_center + np.array(
        [-bbox_size_half[0], bbox_size_half[1], -bbox_size_half[2]], dtype=np.float32
    )
    bbox_vertices[4, :] = bbox_center + np.array(
        [-bbox_size_half[0], -bbox_size_half[1], bbox_size_half[2]], dtype=np.float32
    )
    bbox_vertices[5, :] = bbox_center + np.array(
        [bbox_size_half[0], -bbox_size_half[1], bbox_size_half[2]], dtype=np.float32
    )
    bbox_vertices[6, :] = bbox_center + bbox_size_half
    bbox_vertices[7, :] = bbox_center + np.array(
        [-bbox_size_half[0], bbox_size_half[1], bbox_size_half[2]], dtype=np.float32
    )

    return bbox_vertices


def compute_overall_bbox_size(obj_dict):
    """
    Compute the overall bounding box size of the object\n

    - obj_dict: the object dictionary\n

    Return:\n
    - bbox_size: the overall bounding box size in the form: [lx, ly, lz]
    """

    bbox_min = np.zeros((len(obj_dict["diffuse_tree"]), 3), dtype=np.float32)
    bbox_max = np.zeros((len(obj_dict["diffuse_tree"]), 3), dtype=np.float32)

    # For each part, compute the bounding box and store the min and max vertices
    for part_idx, part in enumerate(obj_dict["diffuse_tree"]):
        bbox_center = np.array(part["aabb"]["center"], dtype=np.float32)
        bbox_size_half = np.array(part["aabb"]["size"], dtype=np.float32) / 2
        bbox_min[part_idx] = bbox_center - bbox_size_half
        bbox_max[part_idx] = bbox_center + bbox_size_half

    # Compute the overall bounding box size
    bbox_min = np.min(bbox_min, axis=0)
    bbox_max = np.max(bbox_max, axis=0)
    bbox_size = bbox_max - bbox_min
    return bbox_size


def remove_handles(obj_dict):
    """
    Remove the handles from the object dictionary and adjust the id, parent, and children of the parts\n

    - obj_dict: the object dictionary\n

    Return:\n
    - obj_dict: the object dictionary without the handles
    """

    # Find the indices of the handles
    handle_idxs = np.array(
        [
            i
            for i in range(len(obj_dict["diffuse_tree"]))
            if obj_dict["diffuse_tree"][i]["name"] == "handle"
            and obj_dict["diffuse_tree"][i]["parent"] != -1
        ]
    )  # Added to avoid corner case of NAP where the handle is the base part

    # Remove the handles from the object dictionary and adjust the id, parent, and children of the parts
    for handle_idx in handle_idxs:
        handle = obj_dict["diffuse_tree"][handle_idx]
        parent_idx = handle["parent"]
        if handle_idx in obj_dict["diffuse_tree"][parent_idx]["children"]:
            obj_dict["diffuse_tree"][parent_idx]["children"].remove(handle_idx)
        obj_dict["diffuse_tree"].pop(handle_idx)

        # Adjust the id, parent, and children of the parts
        for part in obj_dict["diffuse_tree"]:
            if part["id"] > handle_idx:
                part["id"] -= 1
            if part["parent"] > handle_idx:
                part["parent"] -= 1
            for i in range(len(part["children"])):
                if part["children"][i] > handle_idx:
                    part["children"][i] -= 1

        handle_idxs -= 1

    return obj_dict


# def normalize_object(obj_dict):
#     """
#     Normalize the object as a whole\n
#     Make the base part to be centered at the origin and have a size of 2\n

#     obj_dict: the object dictionary
#     """
#     # Find the base part and compute the translation and scaling factors
#     tree = obj_dict["diffuse_tree"]
#     for part in tree:
#         if part["parent"] == -1:
#             translate = -np.array(part["aabb"]["center"], dtype=np.float32)
#             scale = 2.0 / np.array(part["aabb"]["size"], dtype=np.float32)
#             break

#     for part in tree:
#         part["aabb"]["center"] = (
#             np.array(part["aabb"]["center"], dtype=np.float32) + translate
#         ) * scale
#         part["aabb"]["size"] = np.array(part["aabb"]["size"], dtype=np.float32) * scale
#         if part["joint"]["type"] != "fixed":
#             part["joint"]["axis"]["origin"] = (
#                 np.array(part["joint"]["axis"]["origin"], dtype=np.float32) + translate
#             ) * scale

def zero_center_object(obj_dict):
    """
    Zero center the object as a whole\n

    - obj_dict: the object dictionary
    """

    bbox_min = np.zeros((len(obj_dict["diffuse_tree"]), 3))
    bbox_max = np.zeros((len(obj_dict["diffuse_tree"]), 3))

    # For each part, compute the bounding box and store the min and max vertices
    for part_idx, part in enumerate(obj_dict["diffuse_tree"]):
        bbox_center = np.array(part["aabb"]["center"])
        bbox_size_half = np.array(part["aabb"]["size"]) / 2
        bbox_min[part_idx] = bbox_center - bbox_size_half
        bbox_max[part_idx] = bbox_center + bbox_size_half
    
    # Compute the overall bounding box size
    bbox_min = np.min(bbox_min, axis=0)
    bbox_max = np.max(bbox_max, axis=0)
    bbox_center = (bbox_min + bbox_max) / 2

    translate = -bbox_center

    for part in obj_dict["diffuse_tree"]:
        part["aabb"]["center"] = np.array(part["aabb"]["center"]) + translate
        if part["joint"]["type"] != "fixed":
            part["joint"]["axis"]["origin"] = np.array(part["joint"]["axis"]["origin"]) + translate


def rescale_object(obj_dict, scale_factor):
    """
    Rescale the object as a whole\n

    - obj_dict: the object dictionary\n
    - scale_factor: the scale factor to rescale the object
    """

    for part in obj_dict["diffuse_tree"]:
        part["aabb"]["center"] = (
            np.array(part["aabb"]["center"], dtype=np.float32) * scale_factor
        )
        part["aabb"]["size"] = (
            np.array(part["aabb"]["size"], dtype=np.float32) * scale_factor
        )
        if part["joint"]["type"] != "fixed":
            part["joint"]["axis"]["origin"] = (
                np.array(part["joint"]["axis"]["origin"], dtype=np.float32)
                * scale_factor
            )


def find_part_mapping(obj1_dict, obj2_dict, use_hungarian=False):
    """
    Find the correspondences from the first object to the second object based on closest bbox centers\n

    - obj1_dict: the first object dictionary\n
    - obj2_dict: the second object dictionary\n

    Return:\n
    - mapping: the mapping from the first object to the second object in the form: [[obj_part_idx, distance], ...]
    """
    if use_hungarian:
        return hungarian_matching(obj1_dict, obj2_dict)

    # Initialize the distances to be +inf
    mapping = np.ones((len(obj1_dict["diffuse_tree"]), 2)) * np.inf

    # For each part in the first object, find the closest part in the second object based on the bounding box center
    for req_part_idx, req_part in enumerate(obj1_dict["diffuse_tree"]):
        for obj_part_idx, obj_part in enumerate(obj2_dict["diffuse_tree"]):
            distance = np.linalg.norm(
                np.array(req_part["aabb"]["center"])
                - np.array(obj_part["aabb"]["center"])
            )
            if distance < mapping[req_part_idx, 1]:
                mapping[req_part_idx, :] = [obj_part_idx, distance]

    return mapping


def hungarian_matching(obj1_dict, obj2_dict):
    """
    Find the correspondences from the first object to the second object based on closest bbox centers using Hungarian algorithm\n

    - obj1_dict: the first object dictionary\n
    - obj2_dict: the second object dictionary\n

    Return:\n
    - mapping: the mapping from the first object to the second object in the form: [[obj_part_idx], ...]
    """
    INF = 9999999

    tree1 = obj1_dict["diffuse_tree"]
    tree2 = obj2_dict["diffuse_tree"]

    n_parts1 = len(tree1)
    n_parts2 = len(tree2)
    n_parts_max = max(n_parts1, n_parts2)

    # Initialize the cost matrix
    cost_matrix = np.ones((n_parts_max, n_parts_max), dtype=np.float32) * INF
    for i in range(n_parts1):
        for j in range(n_parts2):
            cost_matrix[i, j] = np.linalg.norm(
                np.array(tree1[i]["aabb"]["center"], dtype=np.float32)
                - np.array(tree2[j]["aabb"]["center"], dtype=np.float32)
            )

    # Find the correspondences using the Hungarian algorithm
    row_ind, col_ind = linear_sum_assignment(cost_matrix)

    # Valid correspondences are those with all cost less than INF
    valid_correspondences = np.where(cost_matrix[row_ind, col_ind] < INF)[0]
    invalid_correspondences = np.where(np.logical_not(cost_matrix[row_ind, col_ind] < INF))[0]

    row_i = row_ind[valid_correspondences]
    col_i = col_ind[valid_correspondences]

    # Construct the mapping
    mapping = np.zeros(
        (n_parts1, 2), dtype=np.float32
    ) 
    mapping[row_i, 0] = col_i
    mapping[row_i, 1] = cost_matrix[row_i, col_i]

    # assign the index of the most closely matched part
    if n_parts1 > n_parts2: 
        row_j = row_ind[invalid_correspondences]
        col_j = cost_matrix[row_j, :].argmin(axis=1)
        mapping[row_j, 0] = col_j
        mapping[row_j, 1] = cost_matrix[row_j, col_j]

    return mapping