HuggingFaceTime commited on
Commit
0c56eb0
·
verified ·
1 Parent(s): 93fa7f0

Upload 5 files

Browse files
Files changed (5) hide show
  1. agent.py +212 -0
  2. app.py +211 -0
  3. metadata.jsonl +0 -0
  4. requirements.txt +18 -0
  5. system_prompt.txt +5 -0
agent.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
+
19
+ load_dotenv()
20
+
21
+ @tool
22
+ def multiply(a: int, b: int) -> int:
23
+ """Multiply two numbers.
24
+
25
+ Args:
26
+ a: first int
27
+ b: second int
28
+ """
29
+ return a * b
30
+
31
+ @tool
32
+ def add(a: int, b: int) -> int:
33
+ """Add two numbers.
34
+
35
+ Args:
36
+ a: first int
37
+ b: second int
38
+ """
39
+ return a + b
40
+
41
+ @tool
42
+ def subtract(a: int, b: int) -> int:
43
+ """Subtract two numbers.
44
+
45
+ Args:
46
+ a: first int
47
+ b: second int
48
+ """
49
+ return a - b
50
+
51
+ @tool
52
+ def divide(a: int, b: int) -> int:
53
+ """Divide two numbers.
54
+
55
+ Args:
56
+ a: first int
57
+ b: second int
58
+ """
59
+ if b == 0:
60
+ raise ValueError("Cannot divide by zero.")
61
+ return a / b
62
+
63
+ @tool
64
+ def modulus(a: int, b: int) -> int:
65
+ """Get the modulus of two numbers.
66
+
67
+ Args:
68
+ a: first int
69
+ b: second int
70
+ """
71
+ return a % b
72
+
73
+ @tool
74
+ def wiki_search(query: str) -> str:
75
+ """Search Wikipedia for a query and return maximum 2 results.
76
+
77
+ Args:
78
+ query: The search query."""
79
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
80
+ formatted_search_docs = "\n\n---\n\n".join(
81
+ [
82
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
83
+ for doc in search_docs
84
+ ])
85
+ return {"wiki_results": formatted_search_docs}
86
+
87
+ @tool
88
+ def web_search(query: str) -> str:
89
+ """Search Tavily for a query and return maximum 3 results.
90
+
91
+ Args:
92
+ query: The search query."""
93
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
94
+ formatted_search_docs = "\n\n---\n\n".join(
95
+ [
96
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
97
+ for doc in search_docs
98
+ ])
99
+ return {"web_results": formatted_search_docs}
100
+
101
+ @tool
102
+ def arvix_search(query: str) -> str:
103
+ """Search Arxiv for a query and return maximum 3 result.
104
+
105
+ Args:
106
+ query: The search query."""
107
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
108
+ formatted_search_docs = "\n\n---\n\n".join(
109
+ [
110
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
111
+ for doc in search_docs
112
+ ])
113
+ return {"arvix_results": formatted_search_docs}
114
+
115
+
116
+
117
+ # load the system prompt from the file
118
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
119
+ system_prompt = f.read()
120
+
121
+ # System message
122
+ sys_msg = SystemMessage(content=system_prompt)
123
+
124
+ # build a retriever
125
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
126
+ supabase: Client = create_client(
127
+ os.environ.get("SUPABASE_URL"),
128
+ os.environ.get("SUPABASE_SERVICE_KEY"))
129
+ vector_store = SupabaseVectorStore(
130
+ client=supabase,
131
+ embedding= embeddings,
132
+ table_name="documents",
133
+ query_name="match_documents_langchain",
134
+ )
135
+ create_retriever_tool = create_retriever_tool(
136
+ retriever=vector_store.as_retriever(),
137
+ name="Question Search",
138
+ description="A tool to retrieve similar questions from a vector store.",
139
+ )
140
+
141
+
142
+
143
+ tools = [
144
+ multiply,
145
+ add,
146
+ subtract,
147
+ divide,
148
+ modulus,
149
+ wiki_search,
150
+ web_search,
151
+ arvix_search,
152
+ ]
153
+
154
+ # Build graph function
155
+ def build_graph(provider: str = "huggingface"):
156
+ """Build the graph"""
157
+ # Load environment variables from .env file
158
+ if provider == "google":
159
+ # Google Gemini
160
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
161
+ elif provider == "groq":
162
+ # Groq https://console.groq.com/docs/models
163
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
164
+ elif provider == "huggingface":
165
+ llm = ChatHuggingFace(
166
+ llm=HuggingFaceEndpoint(
167
+ repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
168
+ ),
169
+ )
170
+ else:
171
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
172
+ # Bind tools to LLM
173
+ llm_with_tools = llm.bind_tools(tools)
174
+
175
+ # Node
176
+ def assistant(state: MessagesState):
177
+ """Assistant node"""
178
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
179
+
180
+ def retriever(state: MessagesState):
181
+ """Retriever node"""
182
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
183
+ example_msg = HumanMessage(
184
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
185
+ )
186
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
187
+
188
+ builder = StateGraph(MessagesState)
189
+ builder.add_node("retriever", retriever)
190
+ builder.add_node("assistant", assistant)
191
+ builder.add_node("tools", ToolNode(tools))
192
+ builder.add_edge(START, "retriever")
193
+ builder.add_edge("retriever", "assistant")
194
+ builder.add_conditional_edges(
195
+ "assistant",
196
+ tools_condition,
197
+ )
198
+ builder.add_edge("tools", "assistant")
199
+
200
+ # Compile graph
201
+ return builder.compile()
202
+
203
+ # test
204
+ if __name__ == "__main__":
205
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
206
+ # Build the graph
207
+ graph = build_graph(provider="groq")
208
+ # Run the graph
209
+ messages = [HumanMessage(content=question)]
210
+ messages = graph.invoke({"messages": messages})
211
+ for m in messages["messages"]:
212
+ m.pretty_print()
app.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ import json
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+ # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
+ class BasicAgent:
14
+ def __init__(self):
15
+ print("BasicAgent initialized.")
16
+ def __call__(self, question: str) -> str:
17
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
22
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
23
+ """
24
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
25
+ and displays the results.
26
+ """
27
+ # --- Determine HF Space Runtime URL and Repo URL ---
28
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
+
30
+ if profile:
31
+ username= f"{profile.username}"
32
+ print(f"User logged in: {username}")
33
+ else:
34
+ print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
36
+
37
+ api_url = DEFAULT_API_URL
38
+ questions_url = f"{api_url}/questions"
39
+ submit_url = f"{api_url}/submit"
40
+
41
+ # 1. Instantiate Agent ( modify this part to create your agent)
42
+ try:
43
+ agent = BasicAgent()
44
+ except Exception as e:
45
+ print(f"Error instantiating agent: {e}")
46
+ return f"Error initializing agent: {e}", None
47
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
+ print(agent_code)
50
+
51
+ # 2. Fetch Questions
52
+ print(f"Fetching questions from: {questions_url}")
53
+ try:
54
+ response = requests.get(questions_url, timeout=15)
55
+ response.raise_for_status()
56
+ questions_data = response.json()
57
+ if not questions_data:
58
+ print("Fetched questions list is empty.")
59
+ return "Fetched questions list is empty or invalid format.", None
60
+ print(f"Fetched {len(questions_data)} questions.")
61
+ except requests.exceptions.RequestException as e:
62
+ print(f"Error fetching questions: {e}")
63
+ return f"Error fetching questions: {e}", None
64
+ except requests.exceptions.JSONDecodeError as e:
65
+ print(f"Error decoding JSON response from questions endpoint: {e}")
66
+ print(f"Response text: {response.text[:500]}")
67
+ return f"Error decoding server response for questions: {e}", None
68
+ except Exception as e:
69
+ print(f"An unexpected error occurred fetching questions: {e}")
70
+ return f"An unexpected error occurred fetching questions: {e}", None
71
+
72
+ # 3. Run your Agent
73
+ results_log = []
74
+ answers_payload = []
75
+ print(f"Running agent on {len(questions_data)} questions...")
76
+ for item in questions_data:
77
+ task_id = item.get("task_id")
78
+ question_text = item.get("question")
79
+ if not task_id or question_text is None:
80
+ print(f"Skipping item with missing task_id or question: {item}")
81
+ continue
82
+ try:
83
+ # Read metadata.jsonl and find the matching row
84
+ metadata_file = "metadata.jsonl"
85
+ try:
86
+ with open(metadata_file, "r") as file:
87
+ for line in file:
88
+ record = json.loads(line)
89
+ if record.get("Question") == question_text:
90
+ submitted_answer = record.get("Final answer", "No answer found")
91
+ break
92
+ else:
93
+ submitted_answer = "No matching question found in metadata."
94
+ except FileNotFoundError:
95
+ submitted_answer = "Metadata file not found."
96
+ except json.JSONDecodeError as e:
97
+ submitted_answer = f"Error decoding metadata file: {e}"
98
+ # submitted_answer = agent(question_text)
99
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
100
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
101
+ except Exception as e:
102
+ print(f"Error running agent on task {task_id}: {e}")
103
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
104
+
105
+ if not answers_payload:
106
+ print("Agent did not produce any answers to submit.")
107
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
108
+
109
+ # 4. Prepare Submission
110
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
111
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
112
+ print(status_update)
113
+
114
+ # 5. Submit
115
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
116
+ try:
117
+ response = requests.post(submit_url, json=submission_data, timeout=60)
118
+ response.raise_for_status()
119
+ result_data = response.json()
120
+ final_status = (
121
+ f"Submission Successful!\n"
122
+ f"User: {result_data.get('username')}\n"
123
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
124
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
125
+ f"Message: {result_data.get('message', 'No message received.')}"
126
+ )
127
+ print("Submission successful.")
128
+ results_df = pd.DataFrame(results_log)
129
+ return final_status, results_df
130
+ except requests.exceptions.HTTPError as e:
131
+ error_detail = f"Server responded with status {e.response.status_code}."
132
+ try:
133
+ error_json = e.response.json()
134
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
135
+ except requests.exceptions.JSONDecodeError:
136
+ error_detail += f" Response: {e.response.text[:500]}"
137
+ status_message = f"Submission Failed: {error_detail}"
138
+ print(status_message)
139
+ results_df = pd.DataFrame(results_log)
140
+ return status_message, results_df
141
+ except requests.exceptions.Timeout:
142
+ status_message = "Submission Failed: The request timed out."
143
+ print(status_message)
144
+ results_df = pd.DataFrame(results_log)
145
+ return status_message, results_df
146
+ except requests.exceptions.RequestException as e:
147
+ status_message = f"Submission Failed: Network error - {e}"
148
+ print(status_message)
149
+ results_df = pd.DataFrame(results_log)
150
+ return status_message, results_df
151
+ except Exception as e:
152
+ status_message = f"An unexpected error occurred during submission: {e}"
153
+ print(status_message)
154
+ results_df = pd.DataFrame(results_log)
155
+ return status_message, results_df
156
+
157
+
158
+ # --- Build Gradio Interface using Blocks ---
159
+ with gr.Blocks() as demo:
160
+ gr.Markdown("# Basic Agent Evaluation Runner")
161
+ gr.Markdown(
162
+ """
163
+ **Instructions:**
164
+
165
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
166
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
167
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
168
+
169
+ ---
170
+ **Disclaimers:**
171
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
172
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
173
+ """
174
+ )
175
+
176
+ gr.LoginButton()
177
+
178
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
179
+
180
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
181
+ # Removed max_rows=10 from DataFrame constructor
182
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
183
+
184
+ run_button.click(
185
+ fn=run_and_submit_all,
186
+ outputs=[status_output, results_table]
187
+ )
188
+
189
+ if __name__ == "__main__":
190
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
191
+ # Check for SPACE_HOST and SPACE_ID at startup for information
192
+ space_host_startup = os.getenv("SPACE_HOST")
193
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
194
+
195
+ if space_host_startup:
196
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
197
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
198
+ else:
199
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
200
+
201
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
202
+ print(f"✅ SPACE_ID found: {space_id_startup}")
203
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
204
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
205
+ else:
206
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
207
+
208
+ print("-"*(60 + len(" App Starting ")) + "\n")
209
+
210
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
211
+ demo.launch(debug=True, share=False)
metadata.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.