Spaces:
Runtime error
Runtime error
File size: 8,482 Bytes
252c4ba 5d762cb 252c4ba 5d762cb 252c4ba 5d762cb 252c4ba 5d762cb 252c4ba 5d762cb 4a2dcb9 252c4ba 5d762cb 252c4ba 5d762cb 252c4ba 5d762cb 252c4ba 4a2dcb9 5d762cb 252c4ba 5d762cb 252c4ba b395bd7 252c4ba d49e297 252c4ba d49e297 ddc9a3f 5d762cb 1690882 ddc9a3f d49e297 5d762cb 252c4ba 5d762cb 252c4ba 5d762cb 252c4ba 5d762cb 252c4ba 6390422 5d762cb 252c4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from fmpy import *
from fmpy import read_model_description, extract
from fmpy.fmi2 import FMU2Slave
import numpy as np
import shutil
import pandas as pd
import random
import plotly.graph_objects as go
import json
from fmpy import *
from fmpy import read_model_description, extract
from fmpy.fmi2 import FMU2Slave
import numpy as np
import shutil
import pandas as pd
import random
import plotly.graph_objects as go
import json
df_profile = pd.read_csv("profile_processed.csv")
def getProfileFromID(id):
return df_profile[df_profile.ID==id].iloc[0, 1:].to_list()
def simulation(id, kp, ki, kd, bis_target=40, min_noise=50, max_noise=150):
profile = getProfileFromID(id)
age = profile[0]
weight = profile[1]
height = profile[2]
gender = profile[3]
vrs = {}
fmu = 'Pharmacokinetics_4_comportmental_model_PI_ref_FMU_base4_OAAS_lnx.fmu'
model_description = read_model_description(fmu)
for variable in model_description.modelVariables:
vrs[variable.name] = variable.valueReference
start_time = 0.0
stop_time = 7000
step_size = 1
unzipdir = extract(fmu)
fmu = FMU2Slave(guid=model_description.guid,
unzipDirectory=unzipdir,
modelIdentifier=model_description.coSimulation.modelIdentifier,
instanceName='instance1')
# initialize
fmu.instantiate()
fmu.setupExperiment(startTime=start_time)
fmu.enterInitializationMode()
fmu.exitInitializationMode()
fmu.setReal([vrs["amesim_interface.Age_year"]], [age])
fmu.setReal([vrs["amesim_interface.BIS0"]], [95.6])
fmu.setReal([vrs["amesim_interface.BISmin"]], [8.9])
fmu.setReal([vrs["amesim_interface.Drug_concentration_mgmL"]], [20])
fmu.setReal([vrs["amesim_interface.EC50"]], [2.23])
fmu.setReal([vrs["amesim_interface.Gamma"]], [1.58])
fmu.setReal([vrs["amesim_interface.Gender_0male_1female"]], [gender])
fmu.setReal([vrs["amesim_interface.Height_cm"]], [height])
fmu.setReal([vrs["amesim_interface.Infusion_rate_mLh"]], [200])
fmu.setReal([vrs["amesim_interface.Weight_kg"]], [weight])
vr_input = vrs["amesim_interface.Infusion_rate_mLh"]
vr_output = vrs["amesim_interface.BIS_Index"]
rows = [] # list to record the results
time = start_time
infusion_rate = 200
i = 0
target = bis_target
last_error = 0
# simulation loop
impulsive_noise = random.randint(min_noise, max_noise)
print("noise level:", impulsive_noise)
while time < stop_time:
if time >= 2.4e3 and time < 4.5e3:
target = 60
p = 0
i = 0
if time >= 4.5e3:
target = bis_target
p = 0
i = 0
bis = fmu.getReal([int(vr_output)])[0] if time > step_size else 95.6
p = bis - target
i = i + p
d = p - last_error
last_error = p
infusion_rate = np.clip(kp*p + ki*i + kd*d, 0, 200)
# add impulsive noise to infusion rate
n = time // 100
start = 100 * n
end = start + 50
if (time > start and time < end and n % 15 == 0):
infusion_rate += impulsive_noise
fmu.setReal([vr_input], [int(infusion_rate)])
# perform one step
fmu.doStep(currentCommunicationPoint=time, communicationStepSize=step_size)
# advance the time
time += step_size
# get the values for 'inputs' and 'outputs[4]'
inputs, outputs = fmu.getReal([int(vr_input), int(vr_output)])
# append the results
rows.append((time, bis, inputs))
fmu.terminate()
fmu.freeInstance()
shutil.rmtree(unzipdir, ignore_errors=True)
result = np.array(rows, dtype=np.dtype([('time', np.float64), ('BIS', np.float64), ('Infusion', np.float64)]))
return result, impulsive_noise
def plot_result(result, show_original):
df = pd.DataFrame(result)
trace1 = go.Scatter(x=df.index, y=df['BIS'], mode='lines', name='BIS')
fig1 = go.Figure(data=trace1)
fig1.update_layout(height=400, width=1200, title_text="BIS evolution")
# Add a line trace for column_2 in the second subplot
trace2 = go.Scatter(x=df.index, y=df['Infusion'], mode='lines', name='Infusion rate')
fig2 = go.Figure(data=trace2)
fig2.update_layout(height=400, width=1200, title_text="Infusion rate evolution")
if show_original:
result_baseline = np.load("result_impulsive.npy")
df_original = pd.DataFrame(result_baseline)
fig1.add_trace(go.Scatter(x=df_original.index, y=df_original['BIS'], mode='lines', name='BIS original', line=dict(color="red"), opacity=0.5))
fig2.add_trace(go.Scatter(x=df_original.index, y=df_original['Infusion'], mode='lines', name='Infusion rate original', line=dict(color="red"), opacity=0.5))
else:
np.save("result_impulsive.npy", result)
return fig1, fig2
def gradio_display_profile(id):
profile = getProfileFromID(id)
gender = "Male" if profile[3] == 0 else "Female"
data = {}
data["age"] = [profile[0]]
data["weight"] = [profile[1]]
data["height"] = [profile[2]]
data["gender"] = [gender]
df = pd.DataFrame(data)
return df
def gradio_simulation(id, kp, ki, kd, show_original, bis_target, min_noise, max_noise):
result, noise_level = simulation(id, kp, ki, kd, bis_target, min_noise, max_noise)
fig1, fig2 = plot_result(result, show_original)
return fig1, fig2, noise_level
def gradio_save(id, kp, ki, kd, bis_target, min_noise, max_noise):
result, noise_level = simulation(id, kp, ki, kd, bis_target, min_noise, max_noise)
patient_profile = getProfileFromID(id)
# Assuming patient_profile is a list of 4 integers, bis_trace is a list of 7000 floats, and kp, ki, kd are floats
data = {
'inputs': {
'patient_profile': {
'age': patient_profile[0],
'weight': patient_profile[1],
'height': patient_profile[2],
'gender': patient_profile[3]
},
'bis_trace': result['BIS'].tolist(),
'noise_level': noise_level
},
'outputs': {
'kp': kp,
'ki': ki,
'kd': kd
}
}
with open(f'saved_data/patient-{id}.json', 'w') as f:
json.dump(data, f)
return "Saved"
import gradio as gr
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# BIS Target")
bis_target = gr.Slider(minimum=0, maximum=100, step=1, value=30, label="BIS target")
gr.Markdown("# Impulsive noise range")
min_noise = gr.Slider(minimum=0, maximum=50, step=1, value=50, label="noise min")
max_noise = gr.Slider(minimum=0, maximum=150, step=1, value=150, label="noise max")
gr.Markdown("# Patient profile")
id = gr.Number(value=1, precision=0, label="Patient ID")
profile_output = gr.Dataframe(value=gradio_display_profile(1), label="Patient profile")
id.change(gradio_display_profile, inputs=[id], outputs=[profile_output])
# with gr.Blocks():
# with gr.Accordion("noise range"):
# min_pul = gr.Slider(minimum=0, maximum=50, step=1, value=50, label="noise min")
# max_pul = gr.Slider(minimum=0, maximum=150, step=1, value=150, label="noise max")
gr.Markdown("# PID parameters")
with gr.Blocks():
kp = gr.Slider(minimum=0, maximum=20, value=4, label="kp")
ki = gr.Slider(minimum=0, maximum=1, value=0.01, label="ki")
kd = gr.Slider(minimum=0, maximum=200, value=0, label="kd")
button = gr.Button("Simulate")
show_original = gr.Checkbox(label="Show original")
gr.Markdown("# Save the best parameters")
save_result = gr.Button("Save")
save_output = gr.Textbox(label="Save status")
with gr.Column(scale=5):
plot1 = gr.Plot(label="BIS evolution")
plot2 = gr.Plot(label="Infusion rate evolution")
button.click(gradio_simulation, inputs=[id, kp, ki, kd, show_original, bis_target, min_noise, max_noise], outputs=[plot1, plot2])
save_result.click(gradio_save, inputs=[id, kp, ki, kd, bis_target, min_noise, max_noise], outputs=[save_output])
demo.launch() |