Spaces:
Paused
Paused
Commit
Β·
ac37772
1
Parent(s):
5e8dc4f
files rearranged
Browse files- {data β latentsync/data}/syncnet_dataset.py +0 -0
- {data β latentsync/data}/unet_dataset.py +0 -0
- latentsync/models/attention.py +492 -0
- latentsync/models/motion_module.py +332 -0
- latentsync/models/resnet.py +234 -0
- latentsync/models/syncnet.py +233 -0
- latentsync/models/syncnet_wav2lip.py +90 -0
- latentsync/models/unet.py +528 -0
- latentsync/models/unet_blocks.py +903 -0
- latentsync/models/utils.py +19 -0
- {pipelines β latentsync/pipelines}/lipsync_pipeline.py +0 -0
- {trepa β latentsync/trepa}/__init__.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/__init__.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/utils.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_finetune.py +0 -0
- {trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_pretrain.py +0 -0
- {trepa β latentsync/trepa}/third_party/__init__.py +0 -0
- {trepa β latentsync/trepa}/utils/__init__.py +0 -0
- {trepa β latentsync/trepa}/utils/data_utils.py +0 -0
- {trepa β latentsync/trepa}/utils/metric_utils.py +0 -0
- {utils β latentsync/utils}/affine_transform.py +0 -0
- {utils β latentsync/utils}/audio.py +0 -0
- {utils β latentsync/utils}/av_reader.py +0 -0
- {utils β latentsync/utils}/image_processor.py +0 -0
- latentsync/utils/mask.png +0 -0
- {utils β latentsync/utils}/util.py +0 -0
- {whisper β latentsync/whisper}/audio2feature.py +0 -0
- {whisper β latentsync/whisper}/whisper/__init__.py +0 -0
- {whisper β latentsync/whisper}/whisper/__main__.py +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/merges.txt +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/special_tokens_map.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/tokenizer_config.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/gpt2/vocab.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/mel_filters.npz +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/added_tokens.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/merges.txt +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/special_tokens_map.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/tokenizer_config.json +0 -0
- {whisper β latentsync/whisper}/whisper/assets/multilingual/vocab.json +0 -0
- {whisper β latentsync/whisper}/whisper/audio.py +0 -0
- {whisper β latentsync/whisper}/whisper/decoding.py +0 -0
- {whisper β latentsync/whisper}/whisper/model.py +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/__init__.py +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/basic.py +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/english.json +0 -0
- {whisper β latentsync/whisper}/whisper/normalizers/english.py +0 -0
- {whisper β latentsync/whisper}/whisper/tokenizer.py +0 -0
- {whisper β latentsync/whisper}/whisper/transcribe.py +0 -0
- {whisper β latentsync/whisper}/whisper/utils.py +0 -0
{data β latentsync/data}/syncnet_dataset.py
RENAMED
|
File without changes
|
{data β latentsync/data}/unet_dataset.py
RENAMED
|
File without changes
|
latentsync/models/attention.py
ADDED
|
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from turtle import forward
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch import nn
|
| 10 |
+
|
| 11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 12 |
+
from diffusers.modeling_utils import ModelMixin
|
| 13 |
+
from diffusers.utils import BaseOutput
|
| 14 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 15 |
+
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
| 16 |
+
|
| 17 |
+
from einops import rearrange, repeat
|
| 18 |
+
from .utils import zero_module
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class Transformer3DModelOutput(BaseOutput):
|
| 23 |
+
sample: torch.FloatTensor
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
if is_xformers_available():
|
| 27 |
+
import xformers
|
| 28 |
+
import xformers.ops
|
| 29 |
+
else:
|
| 30 |
+
xformers = None
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
| 34 |
+
@register_to_config
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
num_attention_heads: int = 16,
|
| 38 |
+
attention_head_dim: int = 88,
|
| 39 |
+
in_channels: Optional[int] = None,
|
| 40 |
+
num_layers: int = 1,
|
| 41 |
+
dropout: float = 0.0,
|
| 42 |
+
norm_num_groups: int = 32,
|
| 43 |
+
cross_attention_dim: Optional[int] = None,
|
| 44 |
+
attention_bias: bool = False,
|
| 45 |
+
activation_fn: str = "geglu",
|
| 46 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 47 |
+
use_linear_projection: bool = False,
|
| 48 |
+
only_cross_attention: bool = False,
|
| 49 |
+
upcast_attention: bool = False,
|
| 50 |
+
use_motion_module: bool = False,
|
| 51 |
+
unet_use_cross_frame_attention=None,
|
| 52 |
+
unet_use_temporal_attention=None,
|
| 53 |
+
add_audio_layer=False,
|
| 54 |
+
audio_condition_method="cross_attn",
|
| 55 |
+
custom_audio_layer: bool = False,
|
| 56 |
+
):
|
| 57 |
+
super().__init__()
|
| 58 |
+
self.use_linear_projection = use_linear_projection
|
| 59 |
+
self.num_attention_heads = num_attention_heads
|
| 60 |
+
self.attention_head_dim = attention_head_dim
|
| 61 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 62 |
+
|
| 63 |
+
# Define input layers
|
| 64 |
+
self.in_channels = in_channels
|
| 65 |
+
|
| 66 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 67 |
+
if use_linear_projection:
|
| 68 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 69 |
+
else:
|
| 70 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
| 71 |
+
|
| 72 |
+
if not custom_audio_layer:
|
| 73 |
+
# Define transformers blocks
|
| 74 |
+
self.transformer_blocks = nn.ModuleList(
|
| 75 |
+
[
|
| 76 |
+
BasicTransformerBlock(
|
| 77 |
+
inner_dim,
|
| 78 |
+
num_attention_heads,
|
| 79 |
+
attention_head_dim,
|
| 80 |
+
dropout=dropout,
|
| 81 |
+
cross_attention_dim=cross_attention_dim,
|
| 82 |
+
activation_fn=activation_fn,
|
| 83 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 84 |
+
attention_bias=attention_bias,
|
| 85 |
+
only_cross_attention=only_cross_attention,
|
| 86 |
+
upcast_attention=upcast_attention,
|
| 87 |
+
use_motion_module=use_motion_module,
|
| 88 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 89 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 90 |
+
add_audio_layer=add_audio_layer,
|
| 91 |
+
custom_audio_layer=custom_audio_layer,
|
| 92 |
+
audio_condition_method=audio_condition_method,
|
| 93 |
+
)
|
| 94 |
+
for d in range(num_layers)
|
| 95 |
+
]
|
| 96 |
+
)
|
| 97 |
+
else:
|
| 98 |
+
self.transformer_blocks = nn.ModuleList(
|
| 99 |
+
[
|
| 100 |
+
AudioTransformerBlock(
|
| 101 |
+
inner_dim,
|
| 102 |
+
num_attention_heads,
|
| 103 |
+
attention_head_dim,
|
| 104 |
+
dropout=dropout,
|
| 105 |
+
cross_attention_dim=cross_attention_dim,
|
| 106 |
+
activation_fn=activation_fn,
|
| 107 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 108 |
+
attention_bias=attention_bias,
|
| 109 |
+
only_cross_attention=only_cross_attention,
|
| 110 |
+
upcast_attention=upcast_attention,
|
| 111 |
+
use_motion_module=use_motion_module,
|
| 112 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 113 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 114 |
+
add_audio_layer=add_audio_layer,
|
| 115 |
+
)
|
| 116 |
+
for d in range(num_layers)
|
| 117 |
+
]
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# 4. Define output layers
|
| 121 |
+
if use_linear_projection:
|
| 122 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
| 123 |
+
else:
|
| 124 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 125 |
+
|
| 126 |
+
if custom_audio_layer:
|
| 127 |
+
self.proj_out = zero_module(self.proj_out)
|
| 128 |
+
|
| 129 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
| 130 |
+
# Input
|
| 131 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
| 132 |
+
video_length = hidden_states.shape[2]
|
| 133 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
| 134 |
+
|
| 135 |
+
# No need to do this for audio input, because different audio samples are independent
|
| 136 |
+
# encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
| 137 |
+
|
| 138 |
+
batch, channel, height, weight = hidden_states.shape
|
| 139 |
+
residual = hidden_states
|
| 140 |
+
|
| 141 |
+
hidden_states = self.norm(hidden_states)
|
| 142 |
+
if not self.use_linear_projection:
|
| 143 |
+
hidden_states = self.proj_in(hidden_states)
|
| 144 |
+
inner_dim = hidden_states.shape[1]
|
| 145 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
| 146 |
+
else:
|
| 147 |
+
inner_dim = hidden_states.shape[1]
|
| 148 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
| 149 |
+
hidden_states = self.proj_in(hidden_states)
|
| 150 |
+
|
| 151 |
+
# Blocks
|
| 152 |
+
for block in self.transformer_blocks:
|
| 153 |
+
hidden_states = block(
|
| 154 |
+
hidden_states,
|
| 155 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 156 |
+
timestep=timestep,
|
| 157 |
+
video_length=video_length,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Output
|
| 161 |
+
if not self.use_linear_projection:
|
| 162 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 163 |
+
hidden_states = self.proj_out(hidden_states)
|
| 164 |
+
else:
|
| 165 |
+
hidden_states = self.proj_out(hidden_states)
|
| 166 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 167 |
+
|
| 168 |
+
output = hidden_states + residual
|
| 169 |
+
|
| 170 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
| 171 |
+
if not return_dict:
|
| 172 |
+
return (output,)
|
| 173 |
+
|
| 174 |
+
return Transformer3DModelOutput(sample=output)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class BasicTransformerBlock(nn.Module):
|
| 178 |
+
def __init__(
|
| 179 |
+
self,
|
| 180 |
+
dim: int,
|
| 181 |
+
num_attention_heads: int,
|
| 182 |
+
attention_head_dim: int,
|
| 183 |
+
dropout=0.0,
|
| 184 |
+
cross_attention_dim: Optional[int] = None,
|
| 185 |
+
activation_fn: str = "geglu",
|
| 186 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 187 |
+
attention_bias: bool = False,
|
| 188 |
+
only_cross_attention: bool = False,
|
| 189 |
+
upcast_attention: bool = False,
|
| 190 |
+
use_motion_module: bool = False,
|
| 191 |
+
unet_use_cross_frame_attention=None,
|
| 192 |
+
unet_use_temporal_attention=None,
|
| 193 |
+
add_audio_layer=False,
|
| 194 |
+
custom_audio_layer=False,
|
| 195 |
+
audio_condition_method="cross_attn",
|
| 196 |
+
):
|
| 197 |
+
super().__init__()
|
| 198 |
+
self.only_cross_attention = only_cross_attention
|
| 199 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
| 200 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
| 201 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
| 202 |
+
self.use_motion_module = use_motion_module
|
| 203 |
+
self.add_audio_layer = add_audio_layer
|
| 204 |
+
|
| 205 |
+
# SC-Attn
|
| 206 |
+
assert unet_use_cross_frame_attention is not None
|
| 207 |
+
if unet_use_cross_frame_attention:
|
| 208 |
+
raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
|
| 209 |
+
else:
|
| 210 |
+
self.attn1 = CrossAttention(
|
| 211 |
+
query_dim=dim,
|
| 212 |
+
heads=num_attention_heads,
|
| 213 |
+
dim_head=attention_head_dim,
|
| 214 |
+
dropout=dropout,
|
| 215 |
+
bias=attention_bias,
|
| 216 |
+
upcast_attention=upcast_attention,
|
| 217 |
+
)
|
| 218 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
| 219 |
+
|
| 220 |
+
# Cross-Attn
|
| 221 |
+
if add_audio_layer and audio_condition_method == "cross_attn" and not custom_audio_layer:
|
| 222 |
+
self.audio_cross_attn = AudioCrossAttn(
|
| 223 |
+
dim=dim,
|
| 224 |
+
cross_attention_dim=cross_attention_dim,
|
| 225 |
+
num_attention_heads=num_attention_heads,
|
| 226 |
+
attention_head_dim=attention_head_dim,
|
| 227 |
+
dropout=dropout,
|
| 228 |
+
attention_bias=attention_bias,
|
| 229 |
+
upcast_attention=upcast_attention,
|
| 230 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 231 |
+
use_ada_layer_norm=self.use_ada_layer_norm,
|
| 232 |
+
zero_proj_out=False,
|
| 233 |
+
)
|
| 234 |
+
else:
|
| 235 |
+
self.audio_cross_attn = None
|
| 236 |
+
|
| 237 |
+
# Feed-forward
|
| 238 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 239 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 240 |
+
|
| 241 |
+
# Temp-Attn
|
| 242 |
+
assert unet_use_temporal_attention is not None
|
| 243 |
+
if unet_use_temporal_attention:
|
| 244 |
+
self.attn_temp = CrossAttention(
|
| 245 |
+
query_dim=dim,
|
| 246 |
+
heads=num_attention_heads,
|
| 247 |
+
dim_head=attention_head_dim,
|
| 248 |
+
dropout=dropout,
|
| 249 |
+
bias=attention_bias,
|
| 250 |
+
upcast_attention=upcast_attention,
|
| 251 |
+
)
|
| 252 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
| 253 |
+
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
| 254 |
+
|
| 255 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 256 |
+
if not is_xformers_available():
|
| 257 |
+
print("Here is how to install it")
|
| 258 |
+
raise ModuleNotFoundError(
|
| 259 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
| 260 |
+
" xformers",
|
| 261 |
+
name="xformers",
|
| 262 |
+
)
|
| 263 |
+
elif not torch.cuda.is_available():
|
| 264 |
+
raise ValueError(
|
| 265 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
| 266 |
+
" available for GPU "
|
| 267 |
+
)
|
| 268 |
+
else:
|
| 269 |
+
try:
|
| 270 |
+
# Make sure we can run the memory efficient attention
|
| 271 |
+
_ = xformers.ops.memory_efficient_attention(
|
| 272 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 273 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 274 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 275 |
+
)
|
| 276 |
+
except Exception as e:
|
| 277 |
+
raise e
|
| 278 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
| 279 |
+
if self.audio_cross_attn is not None:
|
| 280 |
+
self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
|
| 281 |
+
use_memory_efficient_attention_xformers
|
| 282 |
+
)
|
| 283 |
+
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
| 284 |
+
|
| 285 |
+
def forward(
|
| 286 |
+
self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
|
| 287 |
+
):
|
| 288 |
+
# SparseCausal-Attention
|
| 289 |
+
norm_hidden_states = (
|
| 290 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# if self.only_cross_attention:
|
| 294 |
+
# hidden_states = (
|
| 295 |
+
# self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
| 296 |
+
# )
|
| 297 |
+
# else:
|
| 298 |
+
# hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
| 299 |
+
|
| 300 |
+
# pdb.set_trace()
|
| 301 |
+
if self.unet_use_cross_frame_attention:
|
| 302 |
+
hidden_states = (
|
| 303 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
|
| 304 |
+
+ hidden_states
|
| 305 |
+
)
|
| 306 |
+
else:
|
| 307 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
|
| 308 |
+
|
| 309 |
+
if self.audio_cross_attn is not None and encoder_hidden_states is not None:
|
| 310 |
+
hidden_states = self.audio_cross_attn(
|
| 311 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
# Feed-forward
|
| 315 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 316 |
+
|
| 317 |
+
# Temporal-Attention
|
| 318 |
+
if self.unet_use_temporal_attention:
|
| 319 |
+
d = hidden_states.shape[1]
|
| 320 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
| 321 |
+
norm_hidden_states = (
|
| 322 |
+
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
| 323 |
+
)
|
| 324 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
| 325 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
| 326 |
+
|
| 327 |
+
return hidden_states
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class AudioTransformerBlock(nn.Module):
|
| 331 |
+
def __init__(
|
| 332 |
+
self,
|
| 333 |
+
dim: int,
|
| 334 |
+
num_attention_heads: int,
|
| 335 |
+
attention_head_dim: int,
|
| 336 |
+
dropout=0.0,
|
| 337 |
+
cross_attention_dim: Optional[int] = None,
|
| 338 |
+
activation_fn: str = "geglu",
|
| 339 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 340 |
+
attention_bias: bool = False,
|
| 341 |
+
only_cross_attention: bool = False,
|
| 342 |
+
upcast_attention: bool = False,
|
| 343 |
+
use_motion_module: bool = False,
|
| 344 |
+
unet_use_cross_frame_attention=None,
|
| 345 |
+
unet_use_temporal_attention=None,
|
| 346 |
+
add_audio_layer=False,
|
| 347 |
+
):
|
| 348 |
+
super().__init__()
|
| 349 |
+
self.only_cross_attention = only_cross_attention
|
| 350 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
| 351 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
| 352 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
| 353 |
+
self.use_motion_module = use_motion_module
|
| 354 |
+
self.add_audio_layer = add_audio_layer
|
| 355 |
+
|
| 356 |
+
# SC-Attn
|
| 357 |
+
assert unet_use_cross_frame_attention is not None
|
| 358 |
+
if unet_use_cross_frame_attention:
|
| 359 |
+
raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
|
| 360 |
+
else:
|
| 361 |
+
self.attn1 = CrossAttention(
|
| 362 |
+
query_dim=dim,
|
| 363 |
+
heads=num_attention_heads,
|
| 364 |
+
dim_head=attention_head_dim,
|
| 365 |
+
dropout=dropout,
|
| 366 |
+
bias=attention_bias,
|
| 367 |
+
upcast_attention=upcast_attention,
|
| 368 |
+
)
|
| 369 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
| 370 |
+
|
| 371 |
+
self.audio_cross_attn = AudioCrossAttn(
|
| 372 |
+
dim=dim,
|
| 373 |
+
cross_attention_dim=cross_attention_dim,
|
| 374 |
+
num_attention_heads=num_attention_heads,
|
| 375 |
+
attention_head_dim=attention_head_dim,
|
| 376 |
+
dropout=dropout,
|
| 377 |
+
attention_bias=attention_bias,
|
| 378 |
+
upcast_attention=upcast_attention,
|
| 379 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 380 |
+
use_ada_layer_norm=self.use_ada_layer_norm,
|
| 381 |
+
zero_proj_out=False,
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# Feed-forward
|
| 385 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 386 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 387 |
+
|
| 388 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
| 389 |
+
if not is_xformers_available():
|
| 390 |
+
print("Here is how to install it")
|
| 391 |
+
raise ModuleNotFoundError(
|
| 392 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
| 393 |
+
" xformers",
|
| 394 |
+
name="xformers",
|
| 395 |
+
)
|
| 396 |
+
elif not torch.cuda.is_available():
|
| 397 |
+
raise ValueError(
|
| 398 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
| 399 |
+
" available for GPU "
|
| 400 |
+
)
|
| 401 |
+
else:
|
| 402 |
+
try:
|
| 403 |
+
# Make sure we can run the memory efficient attention
|
| 404 |
+
_ = xformers.ops.memory_efficient_attention(
|
| 405 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 406 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 407 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 408 |
+
)
|
| 409 |
+
except Exception as e:
|
| 410 |
+
raise e
|
| 411 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
| 412 |
+
if self.audio_cross_attn is not None:
|
| 413 |
+
self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
|
| 414 |
+
use_memory_efficient_attention_xformers
|
| 415 |
+
)
|
| 416 |
+
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
| 417 |
+
|
| 418 |
+
def forward(
|
| 419 |
+
self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
|
| 420 |
+
):
|
| 421 |
+
# SparseCausal-Attention
|
| 422 |
+
norm_hidden_states = (
|
| 423 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# pdb.set_trace()
|
| 427 |
+
if self.unet_use_cross_frame_attention:
|
| 428 |
+
hidden_states = (
|
| 429 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
|
| 430 |
+
+ hidden_states
|
| 431 |
+
)
|
| 432 |
+
else:
|
| 433 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
|
| 434 |
+
|
| 435 |
+
if self.audio_cross_attn is not None and encoder_hidden_states is not None:
|
| 436 |
+
hidden_states = self.audio_cross_attn(
|
| 437 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# Feed-forward
|
| 441 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 442 |
+
|
| 443 |
+
return hidden_states
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class AudioCrossAttn(nn.Module):
|
| 447 |
+
def __init__(
|
| 448 |
+
self,
|
| 449 |
+
dim,
|
| 450 |
+
cross_attention_dim,
|
| 451 |
+
num_attention_heads,
|
| 452 |
+
attention_head_dim,
|
| 453 |
+
dropout,
|
| 454 |
+
attention_bias,
|
| 455 |
+
upcast_attention,
|
| 456 |
+
num_embeds_ada_norm,
|
| 457 |
+
use_ada_layer_norm,
|
| 458 |
+
zero_proj_out=False,
|
| 459 |
+
):
|
| 460 |
+
super().__init__()
|
| 461 |
+
|
| 462 |
+
self.norm = AdaLayerNorm(dim, num_embeds_ada_norm) if use_ada_layer_norm else nn.LayerNorm(dim)
|
| 463 |
+
self.attn = CrossAttention(
|
| 464 |
+
query_dim=dim,
|
| 465 |
+
cross_attention_dim=cross_attention_dim,
|
| 466 |
+
heads=num_attention_heads,
|
| 467 |
+
dim_head=attention_head_dim,
|
| 468 |
+
dropout=dropout,
|
| 469 |
+
bias=attention_bias,
|
| 470 |
+
upcast_attention=upcast_attention,
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
if zero_proj_out:
|
| 474 |
+
self.proj_out = zero_module(nn.Linear(dim, dim))
|
| 475 |
+
|
| 476 |
+
self.zero_proj_out = zero_proj_out
|
| 477 |
+
self.use_ada_layer_norm = use_ada_layer_norm
|
| 478 |
+
|
| 479 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
|
| 480 |
+
previous_hidden_states = hidden_states
|
| 481 |
+
hidden_states = self.norm(hidden_states, timestep) if self.use_ada_layer_norm else self.norm(hidden_states)
|
| 482 |
+
|
| 483 |
+
if encoder_hidden_states.dim() == 4:
|
| 484 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, "b f n d -> (b f) n d")
|
| 485 |
+
|
| 486 |
+
hidden_states = self.attn(
|
| 487 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
if self.zero_proj_out:
|
| 491 |
+
hidden_states = self.proj_out(hidden_states)
|
| 492 |
+
return hidden_states + previous_hidden_states
|
latentsync/models/motion_module.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
|
| 2 |
+
|
| 3 |
+
# Actually we don't use the motion module in the final version of LatentSync
|
| 4 |
+
# When we started the project, we used the codebase of AnimateDiff and tried motion module
|
| 5 |
+
# But the results are poor, and we decied to leave the code here for possible future usage
|
| 6 |
+
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 14 |
+
from diffusers.modeling_utils import ModelMixin
|
| 15 |
+
from diffusers.utils import BaseOutput
|
| 16 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 17 |
+
from diffusers.models.attention import CrossAttention, FeedForward
|
| 18 |
+
|
| 19 |
+
from einops import rearrange, repeat
|
| 20 |
+
import math
|
| 21 |
+
from .utils import zero_module
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class TemporalTransformer3DModelOutput(BaseOutput):
|
| 26 |
+
sample: torch.FloatTensor
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
if is_xformers_available():
|
| 30 |
+
import xformers
|
| 31 |
+
import xformers.ops
|
| 32 |
+
else:
|
| 33 |
+
xformers = None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
| 37 |
+
if motion_module_type == "Vanilla":
|
| 38 |
+
return VanillaTemporalModule(
|
| 39 |
+
in_channels=in_channels,
|
| 40 |
+
**motion_module_kwargs,
|
| 41 |
+
)
|
| 42 |
+
else:
|
| 43 |
+
raise ValueError
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class VanillaTemporalModule(nn.Module):
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
in_channels,
|
| 50 |
+
num_attention_heads=8,
|
| 51 |
+
num_transformer_block=2,
|
| 52 |
+
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
| 53 |
+
cross_frame_attention_mode=None,
|
| 54 |
+
temporal_position_encoding=False,
|
| 55 |
+
temporal_position_encoding_max_len=24,
|
| 56 |
+
temporal_attention_dim_div=1,
|
| 57 |
+
zero_initialize=True,
|
| 58 |
+
):
|
| 59 |
+
super().__init__()
|
| 60 |
+
|
| 61 |
+
self.temporal_transformer = TemporalTransformer3DModel(
|
| 62 |
+
in_channels=in_channels,
|
| 63 |
+
num_attention_heads=num_attention_heads,
|
| 64 |
+
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
|
| 65 |
+
num_layers=num_transformer_block,
|
| 66 |
+
attention_block_types=attention_block_types,
|
| 67 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 68 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 69 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if zero_initialize:
|
| 73 |
+
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
|
| 74 |
+
|
| 75 |
+
def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
|
| 76 |
+
hidden_states = input_tensor
|
| 77 |
+
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
|
| 78 |
+
|
| 79 |
+
output = hidden_states
|
| 80 |
+
return output
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class TemporalTransformer3DModel(nn.Module):
|
| 84 |
+
def __init__(
|
| 85 |
+
self,
|
| 86 |
+
in_channels,
|
| 87 |
+
num_attention_heads,
|
| 88 |
+
attention_head_dim,
|
| 89 |
+
num_layers,
|
| 90 |
+
attention_block_types=(
|
| 91 |
+
"Temporal_Self",
|
| 92 |
+
"Temporal_Self",
|
| 93 |
+
),
|
| 94 |
+
dropout=0.0,
|
| 95 |
+
norm_num_groups=32,
|
| 96 |
+
cross_attention_dim=768,
|
| 97 |
+
activation_fn="geglu",
|
| 98 |
+
attention_bias=False,
|
| 99 |
+
upcast_attention=False,
|
| 100 |
+
cross_frame_attention_mode=None,
|
| 101 |
+
temporal_position_encoding=False,
|
| 102 |
+
temporal_position_encoding_max_len=24,
|
| 103 |
+
):
|
| 104 |
+
super().__init__()
|
| 105 |
+
|
| 106 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 107 |
+
|
| 108 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 109 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 110 |
+
|
| 111 |
+
self.transformer_blocks = nn.ModuleList(
|
| 112 |
+
[
|
| 113 |
+
TemporalTransformerBlock(
|
| 114 |
+
dim=inner_dim,
|
| 115 |
+
num_attention_heads=num_attention_heads,
|
| 116 |
+
attention_head_dim=attention_head_dim,
|
| 117 |
+
attention_block_types=attention_block_types,
|
| 118 |
+
dropout=dropout,
|
| 119 |
+
norm_num_groups=norm_num_groups,
|
| 120 |
+
cross_attention_dim=cross_attention_dim,
|
| 121 |
+
activation_fn=activation_fn,
|
| 122 |
+
attention_bias=attention_bias,
|
| 123 |
+
upcast_attention=upcast_attention,
|
| 124 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 125 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 126 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 127 |
+
)
|
| 128 |
+
for d in range(num_layers)
|
| 129 |
+
]
|
| 130 |
+
)
|
| 131 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
| 132 |
+
|
| 133 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
| 134 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
| 135 |
+
video_length = hidden_states.shape[2]
|
| 136 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
| 137 |
+
|
| 138 |
+
batch, channel, height, weight = hidden_states.shape
|
| 139 |
+
residual = hidden_states
|
| 140 |
+
|
| 141 |
+
hidden_states = self.norm(hidden_states)
|
| 142 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel)
|
| 143 |
+
hidden_states = self.proj_in(hidden_states)
|
| 144 |
+
|
| 145 |
+
# Transformer Blocks
|
| 146 |
+
for block in self.transformer_blocks:
|
| 147 |
+
hidden_states = block(
|
| 148 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# output
|
| 152 |
+
hidden_states = self.proj_out(hidden_states)
|
| 153 |
+
hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2).contiguous()
|
| 154 |
+
|
| 155 |
+
output = hidden_states + residual
|
| 156 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
| 157 |
+
|
| 158 |
+
return output
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class TemporalTransformerBlock(nn.Module):
|
| 162 |
+
def __init__(
|
| 163 |
+
self,
|
| 164 |
+
dim,
|
| 165 |
+
num_attention_heads,
|
| 166 |
+
attention_head_dim,
|
| 167 |
+
attention_block_types=(
|
| 168 |
+
"Temporal_Self",
|
| 169 |
+
"Temporal_Self",
|
| 170 |
+
),
|
| 171 |
+
dropout=0.0,
|
| 172 |
+
norm_num_groups=32,
|
| 173 |
+
cross_attention_dim=768,
|
| 174 |
+
activation_fn="geglu",
|
| 175 |
+
attention_bias=False,
|
| 176 |
+
upcast_attention=False,
|
| 177 |
+
cross_frame_attention_mode=None,
|
| 178 |
+
temporal_position_encoding=False,
|
| 179 |
+
temporal_position_encoding_max_len=24,
|
| 180 |
+
):
|
| 181 |
+
super().__init__()
|
| 182 |
+
|
| 183 |
+
attention_blocks = []
|
| 184 |
+
norms = []
|
| 185 |
+
|
| 186 |
+
for block_name in attention_block_types:
|
| 187 |
+
attention_blocks.append(
|
| 188 |
+
VersatileAttention(
|
| 189 |
+
attention_mode=block_name.split("_")[0],
|
| 190 |
+
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
|
| 191 |
+
query_dim=dim,
|
| 192 |
+
heads=num_attention_heads,
|
| 193 |
+
dim_head=attention_head_dim,
|
| 194 |
+
dropout=dropout,
|
| 195 |
+
bias=attention_bias,
|
| 196 |
+
upcast_attention=upcast_attention,
|
| 197 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 198 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 199 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 200 |
+
)
|
| 201 |
+
)
|
| 202 |
+
norms.append(nn.LayerNorm(dim))
|
| 203 |
+
|
| 204 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
| 205 |
+
self.norms = nn.ModuleList(norms)
|
| 206 |
+
|
| 207 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 208 |
+
self.ff_norm = nn.LayerNorm(dim)
|
| 209 |
+
|
| 210 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
| 211 |
+
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
| 212 |
+
norm_hidden_states = norm(hidden_states)
|
| 213 |
+
hidden_states = (
|
| 214 |
+
attention_block(
|
| 215 |
+
norm_hidden_states,
|
| 216 |
+
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
|
| 217 |
+
video_length=video_length,
|
| 218 |
+
)
|
| 219 |
+
+ hidden_states
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
| 223 |
+
|
| 224 |
+
output = hidden_states
|
| 225 |
+
return output
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class PositionalEncoding(nn.Module):
|
| 229 |
+
def __init__(self, d_model, dropout=0.0, max_len=24):
|
| 230 |
+
super().__init__()
|
| 231 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 232 |
+
position = torch.arange(max_len).unsqueeze(1)
|
| 233 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
| 234 |
+
pe = torch.zeros(1, max_len, d_model)
|
| 235 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
| 236 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
| 237 |
+
self.register_buffer("pe", pe)
|
| 238 |
+
|
| 239 |
+
def forward(self, x):
|
| 240 |
+
x = x + self.pe[:, : x.size(1)]
|
| 241 |
+
return self.dropout(x)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class VersatileAttention(CrossAttention):
|
| 245 |
+
def __init__(
|
| 246 |
+
self,
|
| 247 |
+
attention_mode=None,
|
| 248 |
+
cross_frame_attention_mode=None,
|
| 249 |
+
temporal_position_encoding=False,
|
| 250 |
+
temporal_position_encoding_max_len=24,
|
| 251 |
+
*args,
|
| 252 |
+
**kwargs,
|
| 253 |
+
):
|
| 254 |
+
super().__init__(*args, **kwargs)
|
| 255 |
+
assert attention_mode == "Temporal"
|
| 256 |
+
|
| 257 |
+
self.attention_mode = attention_mode
|
| 258 |
+
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
| 259 |
+
|
| 260 |
+
self.pos_encoder = (
|
| 261 |
+
PositionalEncoding(kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len)
|
| 262 |
+
if (temporal_position_encoding and attention_mode == "Temporal")
|
| 263 |
+
else None
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
def extra_repr(self):
|
| 267 |
+
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
| 268 |
+
|
| 269 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
| 270 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
| 271 |
+
|
| 272 |
+
if self.attention_mode == "Temporal":
|
| 273 |
+
d = hidden_states.shape[1]
|
| 274 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
| 275 |
+
|
| 276 |
+
if self.pos_encoder is not None:
|
| 277 |
+
hidden_states = self.pos_encoder(hidden_states)
|
| 278 |
+
|
| 279 |
+
encoder_hidden_states = (
|
| 280 |
+
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
| 281 |
+
if encoder_hidden_states is not None
|
| 282 |
+
else encoder_hidden_states
|
| 283 |
+
)
|
| 284 |
+
else:
|
| 285 |
+
raise NotImplementedError
|
| 286 |
+
|
| 287 |
+
# encoder_hidden_states = encoder_hidden_states
|
| 288 |
+
|
| 289 |
+
if self.group_norm is not None:
|
| 290 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 291 |
+
|
| 292 |
+
query = self.to_q(hidden_states)
|
| 293 |
+
dim = query.shape[-1]
|
| 294 |
+
query = self.reshape_heads_to_batch_dim(query)
|
| 295 |
+
|
| 296 |
+
if self.added_kv_proj_dim is not None:
|
| 297 |
+
raise NotImplementedError
|
| 298 |
+
|
| 299 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
| 300 |
+
key = self.to_k(encoder_hidden_states)
|
| 301 |
+
value = self.to_v(encoder_hidden_states)
|
| 302 |
+
|
| 303 |
+
key = self.reshape_heads_to_batch_dim(key)
|
| 304 |
+
value = self.reshape_heads_to_batch_dim(value)
|
| 305 |
+
|
| 306 |
+
if attention_mask is not None:
|
| 307 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
| 308 |
+
target_length = query.shape[1]
|
| 309 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
| 310 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
| 311 |
+
|
| 312 |
+
# attention, what we cannot get enough of
|
| 313 |
+
if self._use_memory_efficient_attention_xformers:
|
| 314 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
| 315 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
| 316 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 317 |
+
else:
|
| 318 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
| 319 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
| 320 |
+
else:
|
| 321 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
| 322 |
+
|
| 323 |
+
# linear proj
|
| 324 |
+
hidden_states = self.to_out[0](hidden_states)
|
| 325 |
+
|
| 326 |
+
# dropout
|
| 327 |
+
hidden_states = self.to_out[1](hidden_states)
|
| 328 |
+
|
| 329 |
+
if self.attention_mode == "Temporal":
|
| 330 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
| 331 |
+
|
| 332 |
+
return hidden_states
|
latentsync/models/resnet.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from einops import rearrange
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class InflatedConv3d(nn.Conv2d):
|
| 11 |
+
def forward(self, x):
|
| 12 |
+
video_length = x.shape[2]
|
| 13 |
+
|
| 14 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
| 15 |
+
x = super().forward(x)
|
| 16 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
| 17 |
+
|
| 18 |
+
return x
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class InflatedGroupNorm(nn.GroupNorm):
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
video_length = x.shape[2]
|
| 24 |
+
|
| 25 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
| 26 |
+
x = super().forward(x)
|
| 27 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
| 28 |
+
|
| 29 |
+
return x
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Upsample3D(nn.Module):
|
| 33 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
| 34 |
+
super().__init__()
|
| 35 |
+
self.channels = channels
|
| 36 |
+
self.out_channels = out_channels or channels
|
| 37 |
+
self.use_conv = use_conv
|
| 38 |
+
self.use_conv_transpose = use_conv_transpose
|
| 39 |
+
self.name = name
|
| 40 |
+
|
| 41 |
+
conv = None
|
| 42 |
+
if use_conv_transpose:
|
| 43 |
+
raise NotImplementedError
|
| 44 |
+
elif use_conv:
|
| 45 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
| 46 |
+
|
| 47 |
+
def forward(self, hidden_states, output_size=None):
|
| 48 |
+
assert hidden_states.shape[1] == self.channels
|
| 49 |
+
|
| 50 |
+
if self.use_conv_transpose:
|
| 51 |
+
raise NotImplementedError
|
| 52 |
+
|
| 53 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
| 54 |
+
dtype = hidden_states.dtype
|
| 55 |
+
if dtype == torch.bfloat16:
|
| 56 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 57 |
+
|
| 58 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 59 |
+
if hidden_states.shape[0] >= 64:
|
| 60 |
+
hidden_states = hidden_states.contiguous()
|
| 61 |
+
|
| 62 |
+
# if `output_size` is passed we force the interpolation output
|
| 63 |
+
# size and do not make use of `scale_factor=2`
|
| 64 |
+
if output_size is None:
|
| 65 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
| 66 |
+
else:
|
| 67 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
| 68 |
+
|
| 69 |
+
# If the input is bfloat16, we cast back to bfloat16
|
| 70 |
+
if dtype == torch.bfloat16:
|
| 71 |
+
hidden_states = hidden_states.to(dtype)
|
| 72 |
+
|
| 73 |
+
# if self.use_conv:
|
| 74 |
+
# if self.name == "conv":
|
| 75 |
+
# hidden_states = self.conv(hidden_states)
|
| 76 |
+
# else:
|
| 77 |
+
# hidden_states = self.Conv2d_0(hidden_states)
|
| 78 |
+
hidden_states = self.conv(hidden_states)
|
| 79 |
+
|
| 80 |
+
return hidden_states
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class Downsample3D(nn.Module):
|
| 84 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.channels = channels
|
| 87 |
+
self.out_channels = out_channels or channels
|
| 88 |
+
self.use_conv = use_conv
|
| 89 |
+
self.padding = padding
|
| 90 |
+
stride = 2
|
| 91 |
+
self.name = name
|
| 92 |
+
|
| 93 |
+
if use_conv:
|
| 94 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
| 95 |
+
else:
|
| 96 |
+
raise NotImplementedError
|
| 97 |
+
|
| 98 |
+
def forward(self, hidden_states):
|
| 99 |
+
assert hidden_states.shape[1] == self.channels
|
| 100 |
+
if self.use_conv and self.padding == 0:
|
| 101 |
+
raise NotImplementedError
|
| 102 |
+
|
| 103 |
+
assert hidden_states.shape[1] == self.channels
|
| 104 |
+
hidden_states = self.conv(hidden_states)
|
| 105 |
+
|
| 106 |
+
return hidden_states
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class ResnetBlock3D(nn.Module):
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
*,
|
| 113 |
+
in_channels,
|
| 114 |
+
out_channels=None,
|
| 115 |
+
conv_shortcut=False,
|
| 116 |
+
dropout=0.0,
|
| 117 |
+
temb_channels=512,
|
| 118 |
+
groups=32,
|
| 119 |
+
groups_out=None,
|
| 120 |
+
pre_norm=True,
|
| 121 |
+
eps=1e-6,
|
| 122 |
+
non_linearity="swish",
|
| 123 |
+
time_embedding_norm="default",
|
| 124 |
+
output_scale_factor=1.0,
|
| 125 |
+
use_in_shortcut=None,
|
| 126 |
+
use_inflated_groupnorm=False,
|
| 127 |
+
):
|
| 128 |
+
super().__init__()
|
| 129 |
+
self.pre_norm = pre_norm
|
| 130 |
+
self.pre_norm = True
|
| 131 |
+
self.in_channels = in_channels
|
| 132 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 133 |
+
self.out_channels = out_channels
|
| 134 |
+
self.use_conv_shortcut = conv_shortcut
|
| 135 |
+
self.time_embedding_norm = time_embedding_norm
|
| 136 |
+
self.output_scale_factor = output_scale_factor
|
| 137 |
+
|
| 138 |
+
if groups_out is None:
|
| 139 |
+
groups_out = groups
|
| 140 |
+
|
| 141 |
+
assert use_inflated_groupnorm != None
|
| 142 |
+
if use_inflated_groupnorm:
|
| 143 |
+
self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
| 144 |
+
else:
|
| 145 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
| 146 |
+
|
| 147 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 148 |
+
|
| 149 |
+
if temb_channels is not None:
|
| 150 |
+
time_emb_proj_out_channels = out_channels
|
| 151 |
+
# if self.time_embedding_norm == "default":
|
| 152 |
+
# time_emb_proj_out_channels = out_channels
|
| 153 |
+
# elif self.time_embedding_norm == "scale_shift":
|
| 154 |
+
# time_emb_proj_out_channels = out_channels * 2
|
| 155 |
+
# else:
|
| 156 |
+
# raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
| 157 |
+
|
| 158 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
| 159 |
+
else:
|
| 160 |
+
self.time_emb_proj = None
|
| 161 |
+
|
| 162 |
+
if self.time_embedding_norm == "scale_shift":
|
| 163 |
+
self.double_len_linear = torch.nn.Linear(time_emb_proj_out_channels, 2 * time_emb_proj_out_channels)
|
| 164 |
+
else:
|
| 165 |
+
self.double_len_linear = None
|
| 166 |
+
|
| 167 |
+
if use_inflated_groupnorm:
|
| 168 |
+
self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
| 169 |
+
else:
|
| 170 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
| 171 |
+
|
| 172 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 173 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 174 |
+
|
| 175 |
+
if non_linearity == "swish":
|
| 176 |
+
self.nonlinearity = lambda x: F.silu(x)
|
| 177 |
+
elif non_linearity == "mish":
|
| 178 |
+
self.nonlinearity = Mish()
|
| 179 |
+
elif non_linearity == "silu":
|
| 180 |
+
self.nonlinearity = nn.SiLU()
|
| 181 |
+
|
| 182 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
| 183 |
+
|
| 184 |
+
self.conv_shortcut = None
|
| 185 |
+
if self.use_in_shortcut:
|
| 186 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 187 |
+
|
| 188 |
+
def forward(self, input_tensor, temb):
|
| 189 |
+
hidden_states = input_tensor
|
| 190 |
+
|
| 191 |
+
hidden_states = self.norm1(hidden_states)
|
| 192 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 193 |
+
|
| 194 |
+
hidden_states = self.conv1(hidden_states)
|
| 195 |
+
|
| 196 |
+
if temb is not None:
|
| 197 |
+
if temb.dim() == 2:
|
| 198 |
+
# input (1, 1280)
|
| 199 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))
|
| 200 |
+
temb = temb[:, :, None, None, None] # unsqueeze
|
| 201 |
+
else:
|
| 202 |
+
# input (1, 1280, 16)
|
| 203 |
+
temb = temb.permute(0, 2, 1)
|
| 204 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))
|
| 205 |
+
if self.double_len_linear is not None:
|
| 206 |
+
temb = self.double_len_linear(self.nonlinearity(temb))
|
| 207 |
+
temb = temb.permute(0, 2, 1)
|
| 208 |
+
temb = temb[:, :, :, None, None]
|
| 209 |
+
|
| 210 |
+
if temb is not None and self.time_embedding_norm == "default":
|
| 211 |
+
hidden_states = hidden_states + temb
|
| 212 |
+
|
| 213 |
+
hidden_states = self.norm2(hidden_states)
|
| 214 |
+
|
| 215 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
| 216 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
| 217 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 218 |
+
|
| 219 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 220 |
+
|
| 221 |
+
hidden_states = self.dropout(hidden_states)
|
| 222 |
+
hidden_states = self.conv2(hidden_states)
|
| 223 |
+
|
| 224 |
+
if self.conv_shortcut is not None:
|
| 225 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 226 |
+
|
| 227 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
| 228 |
+
|
| 229 |
+
return output_tensor
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class Mish(torch.nn.Module):
|
| 233 |
+
def forward(self, hidden_states):
|
| 234 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
latentsync/models/syncnet.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
from torch import nn
|
| 17 |
+
from einops import rearrange
|
| 18 |
+
from torch.nn import functional as F
|
| 19 |
+
from ..utils.util import cosine_loss
|
| 20 |
+
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
|
| 24 |
+
from diffusers.models.attention import CrossAttention, FeedForward
|
| 25 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SyncNet(nn.Module):
|
| 30 |
+
def __init__(self, config):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.audio_encoder = DownEncoder2D(
|
| 33 |
+
in_channels=config["audio_encoder"]["in_channels"],
|
| 34 |
+
block_out_channels=config["audio_encoder"]["block_out_channels"],
|
| 35 |
+
downsample_factors=config["audio_encoder"]["downsample_factors"],
|
| 36 |
+
dropout=config["audio_encoder"]["dropout"],
|
| 37 |
+
attn_blocks=config["audio_encoder"]["attn_blocks"],
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
self.visual_encoder = DownEncoder2D(
|
| 41 |
+
in_channels=config["visual_encoder"]["in_channels"],
|
| 42 |
+
block_out_channels=config["visual_encoder"]["block_out_channels"],
|
| 43 |
+
downsample_factors=config["visual_encoder"]["downsample_factors"],
|
| 44 |
+
dropout=config["visual_encoder"]["dropout"],
|
| 45 |
+
attn_blocks=config["visual_encoder"]["attn_blocks"],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.eval()
|
| 49 |
+
|
| 50 |
+
def forward(self, image_sequences, audio_sequences):
|
| 51 |
+
vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
|
| 52 |
+
audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
|
| 53 |
+
|
| 54 |
+
vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
|
| 55 |
+
audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
|
| 56 |
+
|
| 57 |
+
# Make them unit vectors
|
| 58 |
+
vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
|
| 59 |
+
audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
|
| 60 |
+
|
| 61 |
+
return vision_embeds, audio_embeds
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class ResnetBlock2D(nn.Module):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
in_channels: int,
|
| 68 |
+
out_channels: int,
|
| 69 |
+
dropout: float = 0.0,
|
| 70 |
+
norm_num_groups: int = 32,
|
| 71 |
+
eps: float = 1e-6,
|
| 72 |
+
act_fn: str = "silu",
|
| 73 |
+
downsample_factor=2,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
|
| 77 |
+
self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
|
| 78 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 79 |
+
|
| 80 |
+
self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True)
|
| 81 |
+
self.dropout = nn.Dropout(dropout)
|
| 82 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 83 |
+
|
| 84 |
+
if act_fn == "relu":
|
| 85 |
+
self.act_fn = nn.ReLU()
|
| 86 |
+
elif act_fn == "silu":
|
| 87 |
+
self.act_fn = nn.SiLU()
|
| 88 |
+
|
| 89 |
+
if in_channels != out_channels:
|
| 90 |
+
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 91 |
+
else:
|
| 92 |
+
self.conv_shortcut = None
|
| 93 |
+
|
| 94 |
+
if isinstance(downsample_factor, list):
|
| 95 |
+
downsample_factor = tuple(downsample_factor)
|
| 96 |
+
|
| 97 |
+
if downsample_factor == 1:
|
| 98 |
+
self.downsample_conv = None
|
| 99 |
+
else:
|
| 100 |
+
self.downsample_conv = nn.Conv2d(
|
| 101 |
+
out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0
|
| 102 |
+
)
|
| 103 |
+
self.pad = (0, 1, 0, 1)
|
| 104 |
+
if isinstance(downsample_factor, tuple):
|
| 105 |
+
if downsample_factor[0] == 1:
|
| 106 |
+
self.pad = (0, 1, 1, 1) # The padding order is from back to front
|
| 107 |
+
elif downsample_factor[1] == 1:
|
| 108 |
+
self.pad = (1, 1, 0, 1)
|
| 109 |
+
|
| 110 |
+
def forward(self, input_tensor):
|
| 111 |
+
hidden_states = input_tensor
|
| 112 |
+
|
| 113 |
+
hidden_states = self.norm1(hidden_states)
|
| 114 |
+
hidden_states = self.act_fn(hidden_states)
|
| 115 |
+
|
| 116 |
+
hidden_states = self.conv1(hidden_states)
|
| 117 |
+
hidden_states = self.norm2(hidden_states)
|
| 118 |
+
hidden_states = self.act_fn(hidden_states)
|
| 119 |
+
|
| 120 |
+
hidden_states = self.dropout(hidden_states)
|
| 121 |
+
hidden_states = self.conv2(hidden_states)
|
| 122 |
+
|
| 123 |
+
if self.conv_shortcut is not None:
|
| 124 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 125 |
+
|
| 126 |
+
hidden_states += input_tensor
|
| 127 |
+
|
| 128 |
+
if self.downsample_conv is not None:
|
| 129 |
+
hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0)
|
| 130 |
+
hidden_states = self.downsample_conv(hidden_states)
|
| 131 |
+
|
| 132 |
+
return hidden_states
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class AttentionBlock2D(nn.Module):
|
| 136 |
+
def __init__(self, query_dim, norm_num_groups=32, dropout=0.0):
|
| 137 |
+
super().__init__()
|
| 138 |
+
if not is_xformers_available():
|
| 139 |
+
raise ModuleNotFoundError(
|
| 140 |
+
"You have to install xformers to enable memory efficient attetion", name="xformers"
|
| 141 |
+
)
|
| 142 |
+
# inner_dim = dim_head * heads
|
| 143 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True)
|
| 144 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
| 145 |
+
self.norm3 = nn.LayerNorm(query_dim)
|
| 146 |
+
|
| 147 |
+
self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu")
|
| 148 |
+
|
| 149 |
+
self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
|
| 150 |
+
self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
|
| 151 |
+
|
| 152 |
+
self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True)
|
| 153 |
+
self.attn._use_memory_efficient_attention_xformers = True
|
| 154 |
+
|
| 155 |
+
def forward(self, hidden_states):
|
| 156 |
+
assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}."
|
| 157 |
+
|
| 158 |
+
batch, channel, height, width = hidden_states.shape
|
| 159 |
+
residual = hidden_states
|
| 160 |
+
|
| 161 |
+
hidden_states = self.norm1(hidden_states)
|
| 162 |
+
hidden_states = self.conv_in(hidden_states)
|
| 163 |
+
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
|
| 164 |
+
|
| 165 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 166 |
+
hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states
|
| 167 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 168 |
+
|
| 169 |
+
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width)
|
| 170 |
+
hidden_states = self.conv_out(hidden_states)
|
| 171 |
+
|
| 172 |
+
hidden_states = hidden_states + residual
|
| 173 |
+
return hidden_states
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class DownEncoder2D(nn.Module):
|
| 177 |
+
def __init__(
|
| 178 |
+
self,
|
| 179 |
+
in_channels=4 * 16,
|
| 180 |
+
block_out_channels=[64, 128, 256, 256],
|
| 181 |
+
downsample_factors=[2, 2, 2, 2],
|
| 182 |
+
layers_per_block=2,
|
| 183 |
+
norm_num_groups=32,
|
| 184 |
+
attn_blocks=[1, 1, 1, 1],
|
| 185 |
+
dropout: float = 0.0,
|
| 186 |
+
act_fn="silu",
|
| 187 |
+
):
|
| 188 |
+
super().__init__()
|
| 189 |
+
self.layers_per_block = layers_per_block
|
| 190 |
+
|
| 191 |
+
# in
|
| 192 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
|
| 193 |
+
|
| 194 |
+
# down
|
| 195 |
+
self.down_blocks = nn.ModuleList([])
|
| 196 |
+
|
| 197 |
+
output_channels = block_out_channels[0]
|
| 198 |
+
for i, block_out_channel in enumerate(block_out_channels):
|
| 199 |
+
input_channels = output_channels
|
| 200 |
+
output_channels = block_out_channel
|
| 201 |
+
# is_final_block = i == len(block_out_channels) - 1
|
| 202 |
+
|
| 203 |
+
down_block = ResnetBlock2D(
|
| 204 |
+
in_channels=input_channels,
|
| 205 |
+
out_channels=output_channels,
|
| 206 |
+
downsample_factor=downsample_factors[i],
|
| 207 |
+
norm_num_groups=norm_num_groups,
|
| 208 |
+
dropout=dropout,
|
| 209 |
+
act_fn=act_fn,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
self.down_blocks.append(down_block)
|
| 213 |
+
|
| 214 |
+
if attn_blocks[i] == 1:
|
| 215 |
+
attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout)
|
| 216 |
+
self.down_blocks.append(attention_block)
|
| 217 |
+
|
| 218 |
+
# out
|
| 219 |
+
self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
| 220 |
+
self.act_fn_out = nn.ReLU()
|
| 221 |
+
|
| 222 |
+
def forward(self, hidden_states):
|
| 223 |
+
hidden_states = self.conv_in(hidden_states)
|
| 224 |
+
|
| 225 |
+
# down
|
| 226 |
+
for down_block in self.down_blocks:
|
| 227 |
+
hidden_states = down_block(hidden_states)
|
| 228 |
+
|
| 229 |
+
# post-process
|
| 230 |
+
hidden_states = self.norm_out(hidden_states)
|
| 231 |
+
hidden_states = self.act_fn_out(hidden_states)
|
| 232 |
+
|
| 233 |
+
return hidden_states
|
latentsync/models/syncnet_wav2lip.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/primepake/wav2lip_288x288/blob/master/models/syncnetv2.py
|
| 2 |
+
# The code here is for ablation study.
|
| 3 |
+
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SyncNetWav2Lip(nn.Module):
|
| 9 |
+
def __init__(self, act_fn="leaky"):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
# input image sequences: (15, 128, 256)
|
| 13 |
+
self.visual_encoder = nn.Sequential(
|
| 14 |
+
Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3, act_fn=act_fn), # (128, 256)
|
| 15 |
+
Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1, act_fn=act_fn), # (126, 127)
|
| 16 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 17 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 18 |
+
Conv2d(64, 128, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (63, 64)
|
| 19 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 20 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 21 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 22 |
+
Conv2d(128, 256, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (21, 22)
|
| 23 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 24 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 25 |
+
Conv2d(256, 512, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (11, 11)
|
| 26 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 27 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 28 |
+
Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (6, 6)
|
| 29 |
+
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 30 |
+
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 31 |
+
Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1, act_fn="relu"), # (3, 3)
|
| 32 |
+
Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
|
| 33 |
+
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# input audio sequences: (1, 80, 16)
|
| 37 |
+
self.audio_encoder = nn.Sequential(
|
| 38 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
|
| 39 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 40 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 41 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, act_fn=act_fn), # (27, 16)
|
| 42 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 43 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 44 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (9, 6)
|
| 45 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 46 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 47 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1, act_fn=act_fn), # (3, 3)
|
| 48 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 49 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 50 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
|
| 51 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 52 |
+
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
|
| 53 |
+
Conv2d(512, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
|
| 54 |
+
Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def forward(self, image_sequences, audio_sequences):
|
| 58 |
+
vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
|
| 59 |
+
audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
|
| 60 |
+
|
| 61 |
+
vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
|
| 62 |
+
audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
|
| 63 |
+
|
| 64 |
+
# Make them unit vectors
|
| 65 |
+
vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
|
| 66 |
+
audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
|
| 67 |
+
|
| 68 |
+
return vision_embeds, audio_embeds
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class Conv2d(nn.Module):
|
| 72 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, act_fn="relu", *args, **kwargs):
|
| 73 |
+
super().__init__(*args, **kwargs)
|
| 74 |
+
self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout))
|
| 75 |
+
if act_fn == "relu":
|
| 76 |
+
self.act_fn = nn.ReLU()
|
| 77 |
+
elif act_fn == "tanh":
|
| 78 |
+
self.act_fn = nn.Tanh()
|
| 79 |
+
elif act_fn == "silu":
|
| 80 |
+
self.act_fn = nn.SiLU()
|
| 81 |
+
elif act_fn == "leaky":
|
| 82 |
+
self.act_fn = nn.LeakyReLU(0.2, inplace=True)
|
| 83 |
+
|
| 84 |
+
self.residual = residual
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
out = self.conv_block(x)
|
| 88 |
+
if self.residual:
|
| 89 |
+
out += x
|
| 90 |
+
return self.act_fn(out)
|
latentsync/models/unet.py
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet.py
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import List, Optional, Tuple, Union
|
| 5 |
+
import copy
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.utils.checkpoint
|
| 10 |
+
|
| 11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 12 |
+
from diffusers.modeling_utils import ModelMixin
|
| 13 |
+
from diffusers import UNet2DConditionModel
|
| 14 |
+
from diffusers.utils import BaseOutput, logging
|
| 15 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 16 |
+
from .unet_blocks import (
|
| 17 |
+
CrossAttnDownBlock3D,
|
| 18 |
+
CrossAttnUpBlock3D,
|
| 19 |
+
DownBlock3D,
|
| 20 |
+
UNetMidBlock3DCrossAttn,
|
| 21 |
+
UpBlock3D,
|
| 22 |
+
get_down_block,
|
| 23 |
+
get_up_block,
|
| 24 |
+
)
|
| 25 |
+
from .resnet import InflatedConv3d, InflatedGroupNorm
|
| 26 |
+
|
| 27 |
+
from ..utils.util import zero_rank_log
|
| 28 |
+
from einops import rearrange
|
| 29 |
+
from .utils import zero_module
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@dataclass
|
| 36 |
+
class UNet3DConditionOutput(BaseOutput):
|
| 37 |
+
sample: torch.FloatTensor
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
| 41 |
+
_supports_gradient_checkpointing = True
|
| 42 |
+
|
| 43 |
+
@register_to_config
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
sample_size: Optional[int] = None,
|
| 47 |
+
in_channels: int = 4,
|
| 48 |
+
out_channels: int = 4,
|
| 49 |
+
center_input_sample: bool = False,
|
| 50 |
+
flip_sin_to_cos: bool = True,
|
| 51 |
+
freq_shift: int = 0,
|
| 52 |
+
down_block_types: Tuple[str] = (
|
| 53 |
+
"CrossAttnDownBlock3D",
|
| 54 |
+
"CrossAttnDownBlock3D",
|
| 55 |
+
"CrossAttnDownBlock3D",
|
| 56 |
+
"DownBlock3D",
|
| 57 |
+
),
|
| 58 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
| 59 |
+
up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
|
| 60 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 61 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 62 |
+
layers_per_block: int = 2,
|
| 63 |
+
downsample_padding: int = 1,
|
| 64 |
+
mid_block_scale_factor: float = 1,
|
| 65 |
+
act_fn: str = "silu",
|
| 66 |
+
norm_num_groups: int = 32,
|
| 67 |
+
norm_eps: float = 1e-5,
|
| 68 |
+
cross_attention_dim: int = 1280,
|
| 69 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 70 |
+
dual_cross_attention: bool = False,
|
| 71 |
+
use_linear_projection: bool = False,
|
| 72 |
+
class_embed_type: Optional[str] = None,
|
| 73 |
+
num_class_embeds: Optional[int] = None,
|
| 74 |
+
upcast_attention: bool = False,
|
| 75 |
+
resnet_time_scale_shift: str = "default",
|
| 76 |
+
use_inflated_groupnorm=False,
|
| 77 |
+
# Additional
|
| 78 |
+
use_motion_module=False,
|
| 79 |
+
motion_module_resolutions=(1, 2, 4, 8),
|
| 80 |
+
motion_module_mid_block=False,
|
| 81 |
+
motion_module_decoder_only=False,
|
| 82 |
+
motion_module_type=None,
|
| 83 |
+
motion_module_kwargs={},
|
| 84 |
+
unet_use_cross_frame_attention=False,
|
| 85 |
+
unet_use_temporal_attention=False,
|
| 86 |
+
add_audio_layer=False,
|
| 87 |
+
audio_condition_method: str = "cross_attn",
|
| 88 |
+
custom_audio_layer=False,
|
| 89 |
+
):
|
| 90 |
+
super().__init__()
|
| 91 |
+
|
| 92 |
+
self.sample_size = sample_size
|
| 93 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 94 |
+
self.use_motion_module = use_motion_module
|
| 95 |
+
self.add_audio_layer = add_audio_layer
|
| 96 |
+
|
| 97 |
+
self.conv_in = zero_module(InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)))
|
| 98 |
+
|
| 99 |
+
# time
|
| 100 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 101 |
+
timestep_input_dim = block_out_channels[0]
|
| 102 |
+
|
| 103 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 104 |
+
|
| 105 |
+
# class embedding
|
| 106 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 107 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 108 |
+
elif class_embed_type == "timestep":
|
| 109 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 110 |
+
elif class_embed_type == "identity":
|
| 111 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 112 |
+
else:
|
| 113 |
+
self.class_embedding = None
|
| 114 |
+
|
| 115 |
+
self.down_blocks = nn.ModuleList([])
|
| 116 |
+
self.mid_block = None
|
| 117 |
+
self.up_blocks = nn.ModuleList([])
|
| 118 |
+
|
| 119 |
+
if isinstance(only_cross_attention, bool):
|
| 120 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 121 |
+
|
| 122 |
+
if isinstance(attention_head_dim, int):
|
| 123 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 124 |
+
|
| 125 |
+
# down
|
| 126 |
+
output_channel = block_out_channels[0]
|
| 127 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 128 |
+
res = 2**i
|
| 129 |
+
input_channel = output_channel
|
| 130 |
+
output_channel = block_out_channels[i]
|
| 131 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 132 |
+
|
| 133 |
+
down_block = get_down_block(
|
| 134 |
+
down_block_type,
|
| 135 |
+
num_layers=layers_per_block,
|
| 136 |
+
in_channels=input_channel,
|
| 137 |
+
out_channels=output_channel,
|
| 138 |
+
temb_channels=time_embed_dim,
|
| 139 |
+
add_downsample=not is_final_block,
|
| 140 |
+
resnet_eps=norm_eps,
|
| 141 |
+
resnet_act_fn=act_fn,
|
| 142 |
+
resnet_groups=norm_num_groups,
|
| 143 |
+
cross_attention_dim=cross_attention_dim,
|
| 144 |
+
attn_num_head_channels=attention_head_dim[i],
|
| 145 |
+
downsample_padding=downsample_padding,
|
| 146 |
+
dual_cross_attention=dual_cross_attention,
|
| 147 |
+
use_linear_projection=use_linear_projection,
|
| 148 |
+
only_cross_attention=only_cross_attention[i],
|
| 149 |
+
upcast_attention=upcast_attention,
|
| 150 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 151 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 152 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 153 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 154 |
+
use_motion_module=use_motion_module
|
| 155 |
+
and (res in motion_module_resolutions)
|
| 156 |
+
and (not motion_module_decoder_only),
|
| 157 |
+
motion_module_type=motion_module_type,
|
| 158 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 159 |
+
add_audio_layer=add_audio_layer,
|
| 160 |
+
audio_condition_method=audio_condition_method,
|
| 161 |
+
custom_audio_layer=custom_audio_layer,
|
| 162 |
+
)
|
| 163 |
+
self.down_blocks.append(down_block)
|
| 164 |
+
|
| 165 |
+
# mid
|
| 166 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
| 167 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
| 168 |
+
in_channels=block_out_channels[-1],
|
| 169 |
+
temb_channels=time_embed_dim,
|
| 170 |
+
resnet_eps=norm_eps,
|
| 171 |
+
resnet_act_fn=act_fn,
|
| 172 |
+
output_scale_factor=mid_block_scale_factor,
|
| 173 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 174 |
+
cross_attention_dim=cross_attention_dim,
|
| 175 |
+
attn_num_head_channels=attention_head_dim[-1],
|
| 176 |
+
resnet_groups=norm_num_groups,
|
| 177 |
+
dual_cross_attention=dual_cross_attention,
|
| 178 |
+
use_linear_projection=use_linear_projection,
|
| 179 |
+
upcast_attention=upcast_attention,
|
| 180 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 181 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 182 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 183 |
+
use_motion_module=use_motion_module and motion_module_mid_block,
|
| 184 |
+
motion_module_type=motion_module_type,
|
| 185 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 186 |
+
add_audio_layer=add_audio_layer,
|
| 187 |
+
audio_condition_method=audio_condition_method,
|
| 188 |
+
custom_audio_layer=custom_audio_layer,
|
| 189 |
+
)
|
| 190 |
+
else:
|
| 191 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 192 |
+
|
| 193 |
+
# count how many layers upsample the videos
|
| 194 |
+
self.num_upsamplers = 0
|
| 195 |
+
|
| 196 |
+
# up
|
| 197 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 198 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
| 199 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 200 |
+
output_channel = reversed_block_out_channels[0]
|
| 201 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 202 |
+
res = 2 ** (3 - i)
|
| 203 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 204 |
+
|
| 205 |
+
prev_output_channel = output_channel
|
| 206 |
+
output_channel = reversed_block_out_channels[i]
|
| 207 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 208 |
+
|
| 209 |
+
# add upsample block for all BUT final layer
|
| 210 |
+
if not is_final_block:
|
| 211 |
+
add_upsample = True
|
| 212 |
+
self.num_upsamplers += 1
|
| 213 |
+
else:
|
| 214 |
+
add_upsample = False
|
| 215 |
+
|
| 216 |
+
up_block = get_up_block(
|
| 217 |
+
up_block_type,
|
| 218 |
+
num_layers=layers_per_block + 1,
|
| 219 |
+
in_channels=input_channel,
|
| 220 |
+
out_channels=output_channel,
|
| 221 |
+
prev_output_channel=prev_output_channel,
|
| 222 |
+
temb_channels=time_embed_dim,
|
| 223 |
+
add_upsample=add_upsample,
|
| 224 |
+
resnet_eps=norm_eps,
|
| 225 |
+
resnet_act_fn=act_fn,
|
| 226 |
+
resnet_groups=norm_num_groups,
|
| 227 |
+
cross_attention_dim=cross_attention_dim,
|
| 228 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
| 229 |
+
dual_cross_attention=dual_cross_attention,
|
| 230 |
+
use_linear_projection=use_linear_projection,
|
| 231 |
+
only_cross_attention=only_cross_attention[i],
|
| 232 |
+
upcast_attention=upcast_attention,
|
| 233 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 234 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 235 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 236 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 237 |
+
use_motion_module=use_motion_module and (res in motion_module_resolutions),
|
| 238 |
+
motion_module_type=motion_module_type,
|
| 239 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 240 |
+
add_audio_layer=add_audio_layer,
|
| 241 |
+
audio_condition_method=audio_condition_method,
|
| 242 |
+
custom_audio_layer=custom_audio_layer,
|
| 243 |
+
)
|
| 244 |
+
self.up_blocks.append(up_block)
|
| 245 |
+
prev_output_channel = output_channel
|
| 246 |
+
|
| 247 |
+
# out
|
| 248 |
+
if use_inflated_groupnorm:
|
| 249 |
+
self.conv_norm_out = InflatedGroupNorm(
|
| 250 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
| 251 |
+
)
|
| 252 |
+
else:
|
| 253 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 254 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
| 255 |
+
)
|
| 256 |
+
self.conv_act = nn.SiLU()
|
| 257 |
+
|
| 258 |
+
self.conv_out = zero_module(InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1))
|
| 259 |
+
|
| 260 |
+
def set_attention_slice(self, slice_size):
|
| 261 |
+
r"""
|
| 262 |
+
Enable sliced attention computation.
|
| 263 |
+
|
| 264 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
| 265 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
| 266 |
+
|
| 267 |
+
Args:
|
| 268 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 269 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
| 270 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
| 271 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 272 |
+
must be a multiple of `slice_size`.
|
| 273 |
+
"""
|
| 274 |
+
sliceable_head_dims = []
|
| 275 |
+
|
| 276 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
| 277 |
+
if hasattr(module, "set_attention_slice"):
|
| 278 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 279 |
+
|
| 280 |
+
for child in module.children():
|
| 281 |
+
fn_recursive_retrieve_slicable_dims(child)
|
| 282 |
+
|
| 283 |
+
# retrieve number of attention layers
|
| 284 |
+
for module in self.children():
|
| 285 |
+
fn_recursive_retrieve_slicable_dims(module)
|
| 286 |
+
|
| 287 |
+
num_slicable_layers = len(sliceable_head_dims)
|
| 288 |
+
|
| 289 |
+
if slice_size == "auto":
|
| 290 |
+
# half the attention head size is usually a good trade-off between
|
| 291 |
+
# speed and memory
|
| 292 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 293 |
+
elif slice_size == "max":
|
| 294 |
+
# make smallest slice possible
|
| 295 |
+
slice_size = num_slicable_layers * [1]
|
| 296 |
+
|
| 297 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 298 |
+
|
| 299 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 300 |
+
raise ValueError(
|
| 301 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 302 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
for i in range(len(slice_size)):
|
| 306 |
+
size = slice_size[i]
|
| 307 |
+
dim = sliceable_head_dims[i]
|
| 308 |
+
if size is not None and size > dim:
|
| 309 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 310 |
+
|
| 311 |
+
# Recursively walk through all the children.
|
| 312 |
+
# Any children which exposes the set_attention_slice method
|
| 313 |
+
# gets the message
|
| 314 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 315 |
+
if hasattr(module, "set_attention_slice"):
|
| 316 |
+
module.set_attention_slice(slice_size.pop())
|
| 317 |
+
|
| 318 |
+
for child in module.children():
|
| 319 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 320 |
+
|
| 321 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 322 |
+
for module in self.children():
|
| 323 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 324 |
+
|
| 325 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 326 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
| 327 |
+
module.gradient_checkpointing = value
|
| 328 |
+
|
| 329 |
+
def forward(
|
| 330 |
+
self,
|
| 331 |
+
sample: torch.FloatTensor,
|
| 332 |
+
timestep: Union[torch.Tensor, float, int],
|
| 333 |
+
encoder_hidden_states: torch.Tensor,
|
| 334 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 335 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 336 |
+
# support controlnet
|
| 337 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 338 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 339 |
+
return_dict: bool = True,
|
| 340 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
| 341 |
+
r"""
|
| 342 |
+
Args:
|
| 343 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
| 344 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
| 345 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
| 346 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 347 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
| 348 |
+
|
| 349 |
+
Returns:
|
| 350 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 351 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
| 352 |
+
returning a tuple, the first element is the sample tensor.
|
| 353 |
+
"""
|
| 354 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 355 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
| 356 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 357 |
+
# on the fly if necessary.
|
| 358 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 359 |
+
|
| 360 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 361 |
+
forward_upsample_size = False
|
| 362 |
+
upsample_size = None
|
| 363 |
+
|
| 364 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 365 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 366 |
+
forward_upsample_size = True
|
| 367 |
+
|
| 368 |
+
# prepare attention_mask
|
| 369 |
+
if attention_mask is not None:
|
| 370 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 371 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 372 |
+
|
| 373 |
+
# center input if necessary
|
| 374 |
+
if self.config.center_input_sample:
|
| 375 |
+
sample = 2 * sample - 1.0
|
| 376 |
+
|
| 377 |
+
# time
|
| 378 |
+
timesteps = timestep
|
| 379 |
+
if not torch.is_tensor(timesteps):
|
| 380 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 381 |
+
is_mps = sample.device.type == "mps"
|
| 382 |
+
if isinstance(timestep, float):
|
| 383 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 384 |
+
else:
|
| 385 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 386 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 387 |
+
elif len(timesteps.shape) == 0:
|
| 388 |
+
timesteps = timesteps[None].to(sample.device)
|
| 389 |
+
|
| 390 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 391 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 392 |
+
|
| 393 |
+
t_emb = self.time_proj(timesteps)
|
| 394 |
+
|
| 395 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 396 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 397 |
+
# there might be better ways to encapsulate this.
|
| 398 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 399 |
+
emb = self.time_embedding(t_emb)
|
| 400 |
+
|
| 401 |
+
if self.class_embedding is not None:
|
| 402 |
+
if class_labels is None:
|
| 403 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 404 |
+
|
| 405 |
+
if self.config.class_embed_type == "timestep":
|
| 406 |
+
class_labels = self.time_proj(class_labels)
|
| 407 |
+
|
| 408 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 409 |
+
emb = emb + class_emb
|
| 410 |
+
|
| 411 |
+
# pre-process
|
| 412 |
+
sample = self.conv_in(sample)
|
| 413 |
+
|
| 414 |
+
# down
|
| 415 |
+
down_block_res_samples = (sample,)
|
| 416 |
+
for downsample_block in self.down_blocks:
|
| 417 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 418 |
+
sample, res_samples = downsample_block(
|
| 419 |
+
hidden_states=sample,
|
| 420 |
+
temb=emb,
|
| 421 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 422 |
+
attention_mask=attention_mask,
|
| 423 |
+
)
|
| 424 |
+
else:
|
| 425 |
+
sample, res_samples = downsample_block(
|
| 426 |
+
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
down_block_res_samples += res_samples
|
| 430 |
+
|
| 431 |
+
# support controlnet
|
| 432 |
+
down_block_res_samples = list(down_block_res_samples)
|
| 433 |
+
if down_block_additional_residuals is not None:
|
| 434 |
+
for i, down_block_additional_residual in enumerate(down_block_additional_residuals):
|
| 435 |
+
if down_block_additional_residual.dim() == 4: # boardcast
|
| 436 |
+
down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
|
| 437 |
+
down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual
|
| 438 |
+
|
| 439 |
+
# mid
|
| 440 |
+
sample = self.mid_block(
|
| 441 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
# support controlnet
|
| 445 |
+
if mid_block_additional_residual is not None:
|
| 446 |
+
if mid_block_additional_residual.dim() == 4: # boardcast
|
| 447 |
+
mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
|
| 448 |
+
sample = sample + mid_block_additional_residual
|
| 449 |
+
|
| 450 |
+
# up
|
| 451 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 452 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 453 |
+
|
| 454 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 455 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 456 |
+
|
| 457 |
+
# if we have not reached the final block and need to forward the
|
| 458 |
+
# upsample size, we do it here
|
| 459 |
+
if not is_final_block and forward_upsample_size:
|
| 460 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 461 |
+
|
| 462 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 463 |
+
sample = upsample_block(
|
| 464 |
+
hidden_states=sample,
|
| 465 |
+
temb=emb,
|
| 466 |
+
res_hidden_states_tuple=res_samples,
|
| 467 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 468 |
+
upsample_size=upsample_size,
|
| 469 |
+
attention_mask=attention_mask,
|
| 470 |
+
)
|
| 471 |
+
else:
|
| 472 |
+
sample = upsample_block(
|
| 473 |
+
hidden_states=sample,
|
| 474 |
+
temb=emb,
|
| 475 |
+
res_hidden_states_tuple=res_samples,
|
| 476 |
+
upsample_size=upsample_size,
|
| 477 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
# post-process
|
| 481 |
+
sample = self.conv_norm_out(sample)
|
| 482 |
+
sample = self.conv_act(sample)
|
| 483 |
+
sample = self.conv_out(sample)
|
| 484 |
+
|
| 485 |
+
if not return_dict:
|
| 486 |
+
return (sample,)
|
| 487 |
+
|
| 488 |
+
return UNet3DConditionOutput(sample=sample)
|
| 489 |
+
|
| 490 |
+
def load_state_dict(self, state_dict, strict=True):
|
| 491 |
+
# If the loaded checkpoint's in_channels or out_channels are different from config
|
| 492 |
+
temp_state_dict = copy.deepcopy(state_dict)
|
| 493 |
+
if temp_state_dict["conv_in.weight"].shape[1] != self.config.in_channels:
|
| 494 |
+
del temp_state_dict["conv_in.weight"]
|
| 495 |
+
del temp_state_dict["conv_in.bias"]
|
| 496 |
+
if temp_state_dict["conv_out.weight"].shape[0] != self.config.out_channels:
|
| 497 |
+
del temp_state_dict["conv_out.weight"]
|
| 498 |
+
del temp_state_dict["conv_out.bias"]
|
| 499 |
+
|
| 500 |
+
# If the loaded checkpoint's cross_attention_dim is different from config
|
| 501 |
+
keys_to_remove = []
|
| 502 |
+
for key in temp_state_dict:
|
| 503 |
+
if "audio_cross_attn.attn.to_k." in key or "audio_cross_attn.attn.to_v." in key:
|
| 504 |
+
if temp_state_dict[key].shape[1] != self.config.cross_attention_dim:
|
| 505 |
+
keys_to_remove.append(key)
|
| 506 |
+
|
| 507 |
+
for key in keys_to_remove:
|
| 508 |
+
del temp_state_dict[key]
|
| 509 |
+
|
| 510 |
+
return super().load_state_dict(state_dict=temp_state_dict, strict=strict)
|
| 511 |
+
|
| 512 |
+
@classmethod
|
| 513 |
+
def from_pretrained(cls, model_config: dict, ckpt_path: str, device="cpu"):
|
| 514 |
+
unet = cls.from_config(model_config).to(device)
|
| 515 |
+
if ckpt_path != "":
|
| 516 |
+
zero_rank_log(logger, f"Load from checkpoint: {ckpt_path}")
|
| 517 |
+
ckpt = torch.load(ckpt_path, map_location=device)
|
| 518 |
+
if "global_step" in ckpt:
|
| 519 |
+
zero_rank_log(logger, f"resume from global_step: {ckpt['global_step']}")
|
| 520 |
+
resume_global_step = ckpt["global_step"]
|
| 521 |
+
else:
|
| 522 |
+
resume_global_step = 0
|
| 523 |
+
state_dict = ckpt["state_dict"] if "state_dict" in ckpt else ckpt
|
| 524 |
+
unet.load_state_dict(state_dict, strict=False)
|
| 525 |
+
else:
|
| 526 |
+
resume_global_step = 0
|
| 527 |
+
|
| 528 |
+
return unet, resume_global_step
|
latentsync/models/unet_blocks.py
ADDED
|
@@ -0,0 +1,903 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
from .attention import Transformer3DModel
|
| 7 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
| 8 |
+
from .motion_module import get_motion_module
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_down_block(
|
| 12 |
+
down_block_type,
|
| 13 |
+
num_layers,
|
| 14 |
+
in_channels,
|
| 15 |
+
out_channels,
|
| 16 |
+
temb_channels,
|
| 17 |
+
add_downsample,
|
| 18 |
+
resnet_eps,
|
| 19 |
+
resnet_act_fn,
|
| 20 |
+
attn_num_head_channels,
|
| 21 |
+
resnet_groups=None,
|
| 22 |
+
cross_attention_dim=None,
|
| 23 |
+
downsample_padding=None,
|
| 24 |
+
dual_cross_attention=False,
|
| 25 |
+
use_linear_projection=False,
|
| 26 |
+
only_cross_attention=False,
|
| 27 |
+
upcast_attention=False,
|
| 28 |
+
resnet_time_scale_shift="default",
|
| 29 |
+
unet_use_cross_frame_attention=False,
|
| 30 |
+
unet_use_temporal_attention=False,
|
| 31 |
+
use_inflated_groupnorm=False,
|
| 32 |
+
use_motion_module=None,
|
| 33 |
+
motion_module_type=None,
|
| 34 |
+
motion_module_kwargs=None,
|
| 35 |
+
add_audio_layer=False,
|
| 36 |
+
audio_condition_method="cross_attn",
|
| 37 |
+
custom_audio_layer=False,
|
| 38 |
+
):
|
| 39 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
| 40 |
+
if down_block_type == "DownBlock3D":
|
| 41 |
+
return DownBlock3D(
|
| 42 |
+
num_layers=num_layers,
|
| 43 |
+
in_channels=in_channels,
|
| 44 |
+
out_channels=out_channels,
|
| 45 |
+
temb_channels=temb_channels,
|
| 46 |
+
add_downsample=add_downsample,
|
| 47 |
+
resnet_eps=resnet_eps,
|
| 48 |
+
resnet_act_fn=resnet_act_fn,
|
| 49 |
+
resnet_groups=resnet_groups,
|
| 50 |
+
downsample_padding=downsample_padding,
|
| 51 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 52 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 53 |
+
use_motion_module=use_motion_module,
|
| 54 |
+
motion_module_type=motion_module_type,
|
| 55 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 56 |
+
)
|
| 57 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
| 58 |
+
if cross_attention_dim is None:
|
| 59 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
| 60 |
+
return CrossAttnDownBlock3D(
|
| 61 |
+
num_layers=num_layers,
|
| 62 |
+
in_channels=in_channels,
|
| 63 |
+
out_channels=out_channels,
|
| 64 |
+
temb_channels=temb_channels,
|
| 65 |
+
add_downsample=add_downsample,
|
| 66 |
+
resnet_eps=resnet_eps,
|
| 67 |
+
resnet_act_fn=resnet_act_fn,
|
| 68 |
+
resnet_groups=resnet_groups,
|
| 69 |
+
downsample_padding=downsample_padding,
|
| 70 |
+
cross_attention_dim=cross_attention_dim,
|
| 71 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 72 |
+
dual_cross_attention=dual_cross_attention,
|
| 73 |
+
use_linear_projection=use_linear_projection,
|
| 74 |
+
only_cross_attention=only_cross_attention,
|
| 75 |
+
upcast_attention=upcast_attention,
|
| 76 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 77 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 78 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 79 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 80 |
+
use_motion_module=use_motion_module,
|
| 81 |
+
motion_module_type=motion_module_type,
|
| 82 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 83 |
+
add_audio_layer=add_audio_layer,
|
| 84 |
+
audio_condition_method=audio_condition_method,
|
| 85 |
+
custom_audio_layer=custom_audio_layer,
|
| 86 |
+
)
|
| 87 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def get_up_block(
|
| 91 |
+
up_block_type,
|
| 92 |
+
num_layers,
|
| 93 |
+
in_channels,
|
| 94 |
+
out_channels,
|
| 95 |
+
prev_output_channel,
|
| 96 |
+
temb_channels,
|
| 97 |
+
add_upsample,
|
| 98 |
+
resnet_eps,
|
| 99 |
+
resnet_act_fn,
|
| 100 |
+
attn_num_head_channels,
|
| 101 |
+
resnet_groups=None,
|
| 102 |
+
cross_attention_dim=None,
|
| 103 |
+
dual_cross_attention=False,
|
| 104 |
+
use_linear_projection=False,
|
| 105 |
+
only_cross_attention=False,
|
| 106 |
+
upcast_attention=False,
|
| 107 |
+
resnet_time_scale_shift="default",
|
| 108 |
+
unet_use_cross_frame_attention=False,
|
| 109 |
+
unet_use_temporal_attention=False,
|
| 110 |
+
use_inflated_groupnorm=False,
|
| 111 |
+
use_motion_module=None,
|
| 112 |
+
motion_module_type=None,
|
| 113 |
+
motion_module_kwargs=None,
|
| 114 |
+
add_audio_layer=False,
|
| 115 |
+
audio_condition_method="cross_attn",
|
| 116 |
+
custom_audio_layer=False,
|
| 117 |
+
):
|
| 118 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 119 |
+
if up_block_type == "UpBlock3D":
|
| 120 |
+
return UpBlock3D(
|
| 121 |
+
num_layers=num_layers,
|
| 122 |
+
in_channels=in_channels,
|
| 123 |
+
out_channels=out_channels,
|
| 124 |
+
prev_output_channel=prev_output_channel,
|
| 125 |
+
temb_channels=temb_channels,
|
| 126 |
+
add_upsample=add_upsample,
|
| 127 |
+
resnet_eps=resnet_eps,
|
| 128 |
+
resnet_act_fn=resnet_act_fn,
|
| 129 |
+
resnet_groups=resnet_groups,
|
| 130 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 131 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 132 |
+
use_motion_module=use_motion_module,
|
| 133 |
+
motion_module_type=motion_module_type,
|
| 134 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 135 |
+
)
|
| 136 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
| 137 |
+
if cross_attention_dim is None:
|
| 138 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
| 139 |
+
return CrossAttnUpBlock3D(
|
| 140 |
+
num_layers=num_layers,
|
| 141 |
+
in_channels=in_channels,
|
| 142 |
+
out_channels=out_channels,
|
| 143 |
+
prev_output_channel=prev_output_channel,
|
| 144 |
+
temb_channels=temb_channels,
|
| 145 |
+
add_upsample=add_upsample,
|
| 146 |
+
resnet_eps=resnet_eps,
|
| 147 |
+
resnet_act_fn=resnet_act_fn,
|
| 148 |
+
resnet_groups=resnet_groups,
|
| 149 |
+
cross_attention_dim=cross_attention_dim,
|
| 150 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 151 |
+
dual_cross_attention=dual_cross_attention,
|
| 152 |
+
use_linear_projection=use_linear_projection,
|
| 153 |
+
only_cross_attention=only_cross_attention,
|
| 154 |
+
upcast_attention=upcast_attention,
|
| 155 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 156 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 157 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 158 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 159 |
+
use_motion_module=use_motion_module,
|
| 160 |
+
motion_module_type=motion_module_type,
|
| 161 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 162 |
+
add_audio_layer=add_audio_layer,
|
| 163 |
+
audio_condition_method=audio_condition_method,
|
| 164 |
+
custom_audio_layer=custom_audio_layer,
|
| 165 |
+
)
|
| 166 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
| 170 |
+
def __init__(
|
| 171 |
+
self,
|
| 172 |
+
in_channels: int,
|
| 173 |
+
temb_channels: int,
|
| 174 |
+
dropout: float = 0.0,
|
| 175 |
+
num_layers: int = 1,
|
| 176 |
+
resnet_eps: float = 1e-6,
|
| 177 |
+
resnet_time_scale_shift: str = "default",
|
| 178 |
+
resnet_act_fn: str = "swish",
|
| 179 |
+
resnet_groups: int = 32,
|
| 180 |
+
resnet_pre_norm: bool = True,
|
| 181 |
+
attn_num_head_channels=1,
|
| 182 |
+
output_scale_factor=1.0,
|
| 183 |
+
cross_attention_dim=1280,
|
| 184 |
+
dual_cross_attention=False,
|
| 185 |
+
use_linear_projection=False,
|
| 186 |
+
upcast_attention=False,
|
| 187 |
+
unet_use_cross_frame_attention=False,
|
| 188 |
+
unet_use_temporal_attention=False,
|
| 189 |
+
use_inflated_groupnorm=False,
|
| 190 |
+
use_motion_module=None,
|
| 191 |
+
motion_module_type=None,
|
| 192 |
+
motion_module_kwargs=None,
|
| 193 |
+
add_audio_layer=False,
|
| 194 |
+
audio_condition_method="cross_attn",
|
| 195 |
+
custom_audio_layer: bool = False,
|
| 196 |
+
):
|
| 197 |
+
super().__init__()
|
| 198 |
+
|
| 199 |
+
self.has_cross_attention = True
|
| 200 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 201 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 202 |
+
|
| 203 |
+
# there is always at least one resnet
|
| 204 |
+
resnets = [
|
| 205 |
+
ResnetBlock3D(
|
| 206 |
+
in_channels=in_channels,
|
| 207 |
+
out_channels=in_channels,
|
| 208 |
+
temb_channels=temb_channels,
|
| 209 |
+
eps=resnet_eps,
|
| 210 |
+
groups=resnet_groups,
|
| 211 |
+
dropout=dropout,
|
| 212 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 213 |
+
non_linearity=resnet_act_fn,
|
| 214 |
+
output_scale_factor=output_scale_factor,
|
| 215 |
+
pre_norm=resnet_pre_norm,
|
| 216 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 217 |
+
)
|
| 218 |
+
]
|
| 219 |
+
attentions = []
|
| 220 |
+
audio_attentions = []
|
| 221 |
+
motion_modules = []
|
| 222 |
+
|
| 223 |
+
for _ in range(num_layers):
|
| 224 |
+
if dual_cross_attention:
|
| 225 |
+
raise NotImplementedError
|
| 226 |
+
attentions.append(
|
| 227 |
+
Transformer3DModel(
|
| 228 |
+
attn_num_head_channels,
|
| 229 |
+
in_channels // attn_num_head_channels,
|
| 230 |
+
in_channels=in_channels,
|
| 231 |
+
num_layers=1,
|
| 232 |
+
cross_attention_dim=cross_attention_dim,
|
| 233 |
+
norm_num_groups=resnet_groups,
|
| 234 |
+
use_linear_projection=use_linear_projection,
|
| 235 |
+
upcast_attention=upcast_attention,
|
| 236 |
+
use_motion_module=use_motion_module,
|
| 237 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 238 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 239 |
+
add_audio_layer=add_audio_layer,
|
| 240 |
+
audio_condition_method=audio_condition_method,
|
| 241 |
+
)
|
| 242 |
+
)
|
| 243 |
+
audio_attentions.append(
|
| 244 |
+
Transformer3DModel(
|
| 245 |
+
attn_num_head_channels,
|
| 246 |
+
in_channels // attn_num_head_channels,
|
| 247 |
+
in_channels=in_channels,
|
| 248 |
+
num_layers=1,
|
| 249 |
+
cross_attention_dim=cross_attention_dim,
|
| 250 |
+
norm_num_groups=resnet_groups,
|
| 251 |
+
use_linear_projection=use_linear_projection,
|
| 252 |
+
upcast_attention=upcast_attention,
|
| 253 |
+
use_motion_module=use_motion_module,
|
| 254 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 255 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 256 |
+
add_audio_layer=add_audio_layer,
|
| 257 |
+
audio_condition_method=audio_condition_method,
|
| 258 |
+
custom_audio_layer=True,
|
| 259 |
+
)
|
| 260 |
+
if custom_audio_layer
|
| 261 |
+
else None
|
| 262 |
+
)
|
| 263 |
+
motion_modules.append(
|
| 264 |
+
get_motion_module(
|
| 265 |
+
in_channels=in_channels,
|
| 266 |
+
motion_module_type=motion_module_type,
|
| 267 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 268 |
+
)
|
| 269 |
+
if use_motion_module
|
| 270 |
+
else None
|
| 271 |
+
)
|
| 272 |
+
resnets.append(
|
| 273 |
+
ResnetBlock3D(
|
| 274 |
+
in_channels=in_channels,
|
| 275 |
+
out_channels=in_channels,
|
| 276 |
+
temb_channels=temb_channels,
|
| 277 |
+
eps=resnet_eps,
|
| 278 |
+
groups=resnet_groups,
|
| 279 |
+
dropout=dropout,
|
| 280 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 281 |
+
non_linearity=resnet_act_fn,
|
| 282 |
+
output_scale_factor=output_scale_factor,
|
| 283 |
+
pre_norm=resnet_pre_norm,
|
| 284 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 285 |
+
)
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
self.attentions = nn.ModuleList(attentions)
|
| 289 |
+
self.audio_attentions = nn.ModuleList(audio_attentions)
|
| 290 |
+
self.resnets = nn.ModuleList(resnets)
|
| 291 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 292 |
+
|
| 293 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
| 294 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 295 |
+
for attn, audio_attn, resnet, motion_module in zip(
|
| 296 |
+
self.attentions, self.audio_attentions, self.resnets[1:], self.motion_modules
|
| 297 |
+
):
|
| 298 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
| 299 |
+
hidden_states = (
|
| 300 |
+
audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
| 301 |
+
if audio_attn is not None
|
| 302 |
+
else hidden_states
|
| 303 |
+
)
|
| 304 |
+
hidden_states = (
|
| 305 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
| 306 |
+
if motion_module is not None
|
| 307 |
+
else hidden_states
|
| 308 |
+
)
|
| 309 |
+
hidden_states = resnet(hidden_states, temb)
|
| 310 |
+
|
| 311 |
+
return hidden_states
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class CrossAttnDownBlock3D(nn.Module):
|
| 315 |
+
def __init__(
|
| 316 |
+
self,
|
| 317 |
+
in_channels: int,
|
| 318 |
+
out_channels: int,
|
| 319 |
+
temb_channels: int,
|
| 320 |
+
dropout: float = 0.0,
|
| 321 |
+
num_layers: int = 1,
|
| 322 |
+
resnet_eps: float = 1e-6,
|
| 323 |
+
resnet_time_scale_shift: str = "default",
|
| 324 |
+
resnet_act_fn: str = "swish",
|
| 325 |
+
resnet_groups: int = 32,
|
| 326 |
+
resnet_pre_norm: bool = True,
|
| 327 |
+
attn_num_head_channels=1,
|
| 328 |
+
cross_attention_dim=1280,
|
| 329 |
+
output_scale_factor=1.0,
|
| 330 |
+
downsample_padding=1,
|
| 331 |
+
add_downsample=True,
|
| 332 |
+
dual_cross_attention=False,
|
| 333 |
+
use_linear_projection=False,
|
| 334 |
+
only_cross_attention=False,
|
| 335 |
+
upcast_attention=False,
|
| 336 |
+
unet_use_cross_frame_attention=False,
|
| 337 |
+
unet_use_temporal_attention=False,
|
| 338 |
+
use_inflated_groupnorm=False,
|
| 339 |
+
use_motion_module=None,
|
| 340 |
+
motion_module_type=None,
|
| 341 |
+
motion_module_kwargs=None,
|
| 342 |
+
add_audio_layer=False,
|
| 343 |
+
audio_condition_method="cross_attn",
|
| 344 |
+
custom_audio_layer: bool = False,
|
| 345 |
+
):
|
| 346 |
+
super().__init__()
|
| 347 |
+
resnets = []
|
| 348 |
+
attentions = []
|
| 349 |
+
audio_attentions = []
|
| 350 |
+
motion_modules = []
|
| 351 |
+
|
| 352 |
+
self.has_cross_attention = True
|
| 353 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 354 |
+
|
| 355 |
+
for i in range(num_layers):
|
| 356 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 357 |
+
resnets.append(
|
| 358 |
+
ResnetBlock3D(
|
| 359 |
+
in_channels=in_channels,
|
| 360 |
+
out_channels=out_channels,
|
| 361 |
+
temb_channels=temb_channels,
|
| 362 |
+
eps=resnet_eps,
|
| 363 |
+
groups=resnet_groups,
|
| 364 |
+
dropout=dropout,
|
| 365 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 366 |
+
non_linearity=resnet_act_fn,
|
| 367 |
+
output_scale_factor=output_scale_factor,
|
| 368 |
+
pre_norm=resnet_pre_norm,
|
| 369 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 370 |
+
)
|
| 371 |
+
)
|
| 372 |
+
if dual_cross_attention:
|
| 373 |
+
raise NotImplementedError
|
| 374 |
+
attentions.append(
|
| 375 |
+
Transformer3DModel(
|
| 376 |
+
attn_num_head_channels,
|
| 377 |
+
out_channels // attn_num_head_channels,
|
| 378 |
+
in_channels=out_channels,
|
| 379 |
+
num_layers=1,
|
| 380 |
+
cross_attention_dim=cross_attention_dim,
|
| 381 |
+
norm_num_groups=resnet_groups,
|
| 382 |
+
use_linear_projection=use_linear_projection,
|
| 383 |
+
only_cross_attention=only_cross_attention,
|
| 384 |
+
upcast_attention=upcast_attention,
|
| 385 |
+
use_motion_module=use_motion_module,
|
| 386 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 387 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 388 |
+
add_audio_layer=add_audio_layer,
|
| 389 |
+
audio_condition_method=audio_condition_method,
|
| 390 |
+
)
|
| 391 |
+
)
|
| 392 |
+
audio_attentions.append(
|
| 393 |
+
Transformer3DModel(
|
| 394 |
+
attn_num_head_channels,
|
| 395 |
+
out_channels // attn_num_head_channels,
|
| 396 |
+
in_channels=out_channels,
|
| 397 |
+
num_layers=1,
|
| 398 |
+
cross_attention_dim=cross_attention_dim,
|
| 399 |
+
norm_num_groups=resnet_groups,
|
| 400 |
+
use_linear_projection=use_linear_projection,
|
| 401 |
+
only_cross_attention=only_cross_attention,
|
| 402 |
+
upcast_attention=upcast_attention,
|
| 403 |
+
use_motion_module=use_motion_module,
|
| 404 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 405 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 406 |
+
add_audio_layer=add_audio_layer,
|
| 407 |
+
audio_condition_method=audio_condition_method,
|
| 408 |
+
custom_audio_layer=True,
|
| 409 |
+
)
|
| 410 |
+
if custom_audio_layer
|
| 411 |
+
else None
|
| 412 |
+
)
|
| 413 |
+
motion_modules.append(
|
| 414 |
+
get_motion_module(
|
| 415 |
+
in_channels=out_channels,
|
| 416 |
+
motion_module_type=motion_module_type,
|
| 417 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 418 |
+
)
|
| 419 |
+
if use_motion_module
|
| 420 |
+
else None
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
self.attentions = nn.ModuleList(attentions)
|
| 424 |
+
self.audio_attentions = nn.ModuleList(audio_attentions)
|
| 425 |
+
self.resnets = nn.ModuleList(resnets)
|
| 426 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 427 |
+
|
| 428 |
+
if add_downsample:
|
| 429 |
+
self.downsamplers = nn.ModuleList(
|
| 430 |
+
[
|
| 431 |
+
Downsample3D(
|
| 432 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 433 |
+
)
|
| 434 |
+
]
|
| 435 |
+
)
|
| 436 |
+
else:
|
| 437 |
+
self.downsamplers = None
|
| 438 |
+
|
| 439 |
+
self.gradient_checkpointing = False
|
| 440 |
+
|
| 441 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
| 442 |
+
output_states = ()
|
| 443 |
+
|
| 444 |
+
for resnet, attn, audio_attn, motion_module in zip(
|
| 445 |
+
self.resnets, self.attentions, self.audio_attentions, self.motion_modules
|
| 446 |
+
):
|
| 447 |
+
if self.training and self.gradient_checkpointing:
|
| 448 |
+
|
| 449 |
+
def create_custom_forward(module, return_dict=None):
|
| 450 |
+
def custom_forward(*inputs):
|
| 451 |
+
if return_dict is not None:
|
| 452 |
+
return module(*inputs, return_dict=return_dict)
|
| 453 |
+
else:
|
| 454 |
+
return module(*inputs)
|
| 455 |
+
|
| 456 |
+
return custom_forward
|
| 457 |
+
|
| 458 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 459 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 460 |
+
create_custom_forward(attn, return_dict=False),
|
| 461 |
+
hidden_states,
|
| 462 |
+
encoder_hidden_states,
|
| 463 |
+
)[0]
|
| 464 |
+
if motion_module is not None:
|
| 465 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 466 |
+
create_custom_forward(motion_module),
|
| 467 |
+
hidden_states.requires_grad_(),
|
| 468 |
+
temb,
|
| 469 |
+
encoder_hidden_states,
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
else:
|
| 473 |
+
hidden_states = resnet(hidden_states, temb)
|
| 474 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
| 475 |
+
|
| 476 |
+
hidden_states = (
|
| 477 |
+
audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
| 478 |
+
if audio_attn is not None
|
| 479 |
+
else hidden_states
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
# add motion module
|
| 483 |
+
hidden_states = (
|
| 484 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
| 485 |
+
if motion_module is not None
|
| 486 |
+
else hidden_states
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
output_states += (hidden_states,)
|
| 490 |
+
|
| 491 |
+
if self.downsamplers is not None:
|
| 492 |
+
for downsampler in self.downsamplers:
|
| 493 |
+
hidden_states = downsampler(hidden_states)
|
| 494 |
+
|
| 495 |
+
output_states += (hidden_states,)
|
| 496 |
+
|
| 497 |
+
return hidden_states, output_states
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
class DownBlock3D(nn.Module):
|
| 501 |
+
def __init__(
|
| 502 |
+
self,
|
| 503 |
+
in_channels: int,
|
| 504 |
+
out_channels: int,
|
| 505 |
+
temb_channels: int,
|
| 506 |
+
dropout: float = 0.0,
|
| 507 |
+
num_layers: int = 1,
|
| 508 |
+
resnet_eps: float = 1e-6,
|
| 509 |
+
resnet_time_scale_shift: str = "default",
|
| 510 |
+
resnet_act_fn: str = "swish",
|
| 511 |
+
resnet_groups: int = 32,
|
| 512 |
+
resnet_pre_norm: bool = True,
|
| 513 |
+
output_scale_factor=1.0,
|
| 514 |
+
add_downsample=True,
|
| 515 |
+
downsample_padding=1,
|
| 516 |
+
use_inflated_groupnorm=False,
|
| 517 |
+
use_motion_module=None,
|
| 518 |
+
motion_module_type=None,
|
| 519 |
+
motion_module_kwargs=None,
|
| 520 |
+
):
|
| 521 |
+
super().__init__()
|
| 522 |
+
resnets = []
|
| 523 |
+
motion_modules = []
|
| 524 |
+
|
| 525 |
+
for i in range(num_layers):
|
| 526 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 527 |
+
resnets.append(
|
| 528 |
+
ResnetBlock3D(
|
| 529 |
+
in_channels=in_channels,
|
| 530 |
+
out_channels=out_channels,
|
| 531 |
+
temb_channels=temb_channels,
|
| 532 |
+
eps=resnet_eps,
|
| 533 |
+
groups=resnet_groups,
|
| 534 |
+
dropout=dropout,
|
| 535 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 536 |
+
non_linearity=resnet_act_fn,
|
| 537 |
+
output_scale_factor=output_scale_factor,
|
| 538 |
+
pre_norm=resnet_pre_norm,
|
| 539 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 540 |
+
)
|
| 541 |
+
)
|
| 542 |
+
motion_modules.append(
|
| 543 |
+
get_motion_module(
|
| 544 |
+
in_channels=out_channels,
|
| 545 |
+
motion_module_type=motion_module_type,
|
| 546 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 547 |
+
)
|
| 548 |
+
if use_motion_module
|
| 549 |
+
else None
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
self.resnets = nn.ModuleList(resnets)
|
| 553 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 554 |
+
|
| 555 |
+
if add_downsample:
|
| 556 |
+
self.downsamplers = nn.ModuleList(
|
| 557 |
+
[
|
| 558 |
+
Downsample3D(
|
| 559 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 560 |
+
)
|
| 561 |
+
]
|
| 562 |
+
)
|
| 563 |
+
else:
|
| 564 |
+
self.downsamplers = None
|
| 565 |
+
|
| 566 |
+
self.gradient_checkpointing = False
|
| 567 |
+
|
| 568 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
| 569 |
+
output_states = ()
|
| 570 |
+
|
| 571 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
| 572 |
+
if self.training and self.gradient_checkpointing:
|
| 573 |
+
|
| 574 |
+
def create_custom_forward(module):
|
| 575 |
+
def custom_forward(*inputs):
|
| 576 |
+
return module(*inputs)
|
| 577 |
+
|
| 578 |
+
return custom_forward
|
| 579 |
+
|
| 580 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 581 |
+
if motion_module is not None:
|
| 582 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 583 |
+
create_custom_forward(motion_module),
|
| 584 |
+
hidden_states.requires_grad_(),
|
| 585 |
+
temb,
|
| 586 |
+
encoder_hidden_states,
|
| 587 |
+
)
|
| 588 |
+
else:
|
| 589 |
+
hidden_states = resnet(hidden_states, temb)
|
| 590 |
+
|
| 591 |
+
# add motion module
|
| 592 |
+
hidden_states = (
|
| 593 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
| 594 |
+
if motion_module is not None
|
| 595 |
+
else hidden_states
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
output_states += (hidden_states,)
|
| 599 |
+
|
| 600 |
+
if self.downsamplers is not None:
|
| 601 |
+
for downsampler in self.downsamplers:
|
| 602 |
+
hidden_states = downsampler(hidden_states)
|
| 603 |
+
|
| 604 |
+
output_states += (hidden_states,)
|
| 605 |
+
|
| 606 |
+
return hidden_states, output_states
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
class CrossAttnUpBlock3D(nn.Module):
|
| 610 |
+
def __init__(
|
| 611 |
+
self,
|
| 612 |
+
in_channels: int,
|
| 613 |
+
out_channels: int,
|
| 614 |
+
prev_output_channel: int,
|
| 615 |
+
temb_channels: int,
|
| 616 |
+
dropout: float = 0.0,
|
| 617 |
+
num_layers: int = 1,
|
| 618 |
+
resnet_eps: float = 1e-6,
|
| 619 |
+
resnet_time_scale_shift: str = "default",
|
| 620 |
+
resnet_act_fn: str = "swish",
|
| 621 |
+
resnet_groups: int = 32,
|
| 622 |
+
resnet_pre_norm: bool = True,
|
| 623 |
+
attn_num_head_channels=1,
|
| 624 |
+
cross_attention_dim=1280,
|
| 625 |
+
output_scale_factor=1.0,
|
| 626 |
+
add_upsample=True,
|
| 627 |
+
dual_cross_attention=False,
|
| 628 |
+
use_linear_projection=False,
|
| 629 |
+
only_cross_attention=False,
|
| 630 |
+
upcast_attention=False,
|
| 631 |
+
unet_use_cross_frame_attention=False,
|
| 632 |
+
unet_use_temporal_attention=False,
|
| 633 |
+
use_inflated_groupnorm=False,
|
| 634 |
+
use_motion_module=None,
|
| 635 |
+
motion_module_type=None,
|
| 636 |
+
motion_module_kwargs=None,
|
| 637 |
+
add_audio_layer=False,
|
| 638 |
+
audio_condition_method="cross_attn",
|
| 639 |
+
custom_audio_layer=False,
|
| 640 |
+
):
|
| 641 |
+
super().__init__()
|
| 642 |
+
resnets = []
|
| 643 |
+
attentions = []
|
| 644 |
+
audio_attentions = []
|
| 645 |
+
motion_modules = []
|
| 646 |
+
|
| 647 |
+
self.has_cross_attention = True
|
| 648 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 649 |
+
|
| 650 |
+
for i in range(num_layers):
|
| 651 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 652 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 653 |
+
|
| 654 |
+
resnets.append(
|
| 655 |
+
ResnetBlock3D(
|
| 656 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 657 |
+
out_channels=out_channels,
|
| 658 |
+
temb_channels=temb_channels,
|
| 659 |
+
eps=resnet_eps,
|
| 660 |
+
groups=resnet_groups,
|
| 661 |
+
dropout=dropout,
|
| 662 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 663 |
+
non_linearity=resnet_act_fn,
|
| 664 |
+
output_scale_factor=output_scale_factor,
|
| 665 |
+
pre_norm=resnet_pre_norm,
|
| 666 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 667 |
+
)
|
| 668 |
+
)
|
| 669 |
+
if dual_cross_attention:
|
| 670 |
+
raise NotImplementedError
|
| 671 |
+
attentions.append(
|
| 672 |
+
Transformer3DModel(
|
| 673 |
+
attn_num_head_channels,
|
| 674 |
+
out_channels // attn_num_head_channels,
|
| 675 |
+
in_channels=out_channels,
|
| 676 |
+
num_layers=1,
|
| 677 |
+
cross_attention_dim=cross_attention_dim,
|
| 678 |
+
norm_num_groups=resnet_groups,
|
| 679 |
+
use_linear_projection=use_linear_projection,
|
| 680 |
+
only_cross_attention=only_cross_attention,
|
| 681 |
+
upcast_attention=upcast_attention,
|
| 682 |
+
use_motion_module=use_motion_module,
|
| 683 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 684 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 685 |
+
add_audio_layer=add_audio_layer,
|
| 686 |
+
audio_condition_method=audio_condition_method,
|
| 687 |
+
)
|
| 688 |
+
)
|
| 689 |
+
audio_attentions.append(
|
| 690 |
+
Transformer3DModel(
|
| 691 |
+
attn_num_head_channels,
|
| 692 |
+
out_channels // attn_num_head_channels,
|
| 693 |
+
in_channels=out_channels,
|
| 694 |
+
num_layers=1,
|
| 695 |
+
cross_attention_dim=cross_attention_dim,
|
| 696 |
+
norm_num_groups=resnet_groups,
|
| 697 |
+
use_linear_projection=use_linear_projection,
|
| 698 |
+
only_cross_attention=only_cross_attention,
|
| 699 |
+
upcast_attention=upcast_attention,
|
| 700 |
+
use_motion_module=use_motion_module,
|
| 701 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 702 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 703 |
+
add_audio_layer=add_audio_layer,
|
| 704 |
+
audio_condition_method=audio_condition_method,
|
| 705 |
+
custom_audio_layer=True,
|
| 706 |
+
)
|
| 707 |
+
if custom_audio_layer
|
| 708 |
+
else None
|
| 709 |
+
)
|
| 710 |
+
motion_modules.append(
|
| 711 |
+
get_motion_module(
|
| 712 |
+
in_channels=out_channels,
|
| 713 |
+
motion_module_type=motion_module_type,
|
| 714 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 715 |
+
)
|
| 716 |
+
if use_motion_module
|
| 717 |
+
else None
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
self.attentions = nn.ModuleList(attentions)
|
| 721 |
+
self.audio_attentions = nn.ModuleList(audio_attentions)
|
| 722 |
+
self.resnets = nn.ModuleList(resnets)
|
| 723 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 724 |
+
|
| 725 |
+
if add_upsample:
|
| 726 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 727 |
+
else:
|
| 728 |
+
self.upsamplers = None
|
| 729 |
+
|
| 730 |
+
self.gradient_checkpointing = False
|
| 731 |
+
|
| 732 |
+
def forward(
|
| 733 |
+
self,
|
| 734 |
+
hidden_states,
|
| 735 |
+
res_hidden_states_tuple,
|
| 736 |
+
temb=None,
|
| 737 |
+
encoder_hidden_states=None,
|
| 738 |
+
upsample_size=None,
|
| 739 |
+
attention_mask=None,
|
| 740 |
+
):
|
| 741 |
+
for resnet, attn, audio_attn, motion_module in zip(
|
| 742 |
+
self.resnets, self.attentions, self.audio_attentions, self.motion_modules
|
| 743 |
+
):
|
| 744 |
+
# pop res hidden states
|
| 745 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 746 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 747 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 748 |
+
|
| 749 |
+
if self.training and self.gradient_checkpointing:
|
| 750 |
+
|
| 751 |
+
def create_custom_forward(module, return_dict=None):
|
| 752 |
+
def custom_forward(*inputs):
|
| 753 |
+
if return_dict is not None:
|
| 754 |
+
return module(*inputs, return_dict=return_dict)
|
| 755 |
+
else:
|
| 756 |
+
return module(*inputs)
|
| 757 |
+
|
| 758 |
+
return custom_forward
|
| 759 |
+
|
| 760 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 761 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 762 |
+
create_custom_forward(attn, return_dict=False),
|
| 763 |
+
hidden_states,
|
| 764 |
+
encoder_hidden_states,
|
| 765 |
+
)[0]
|
| 766 |
+
if motion_module is not None:
|
| 767 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 768 |
+
create_custom_forward(motion_module),
|
| 769 |
+
hidden_states.requires_grad_(),
|
| 770 |
+
temb,
|
| 771 |
+
encoder_hidden_states,
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
else:
|
| 775 |
+
hidden_states = resnet(hidden_states, temb)
|
| 776 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
| 777 |
+
hidden_states = (
|
| 778 |
+
audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
| 779 |
+
if audio_attn is not None
|
| 780 |
+
else hidden_states
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
# add motion module
|
| 784 |
+
hidden_states = (
|
| 785 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
| 786 |
+
if motion_module is not None
|
| 787 |
+
else hidden_states
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
if self.upsamplers is not None:
|
| 791 |
+
for upsampler in self.upsamplers:
|
| 792 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 793 |
+
|
| 794 |
+
return hidden_states
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
class UpBlock3D(nn.Module):
|
| 798 |
+
def __init__(
|
| 799 |
+
self,
|
| 800 |
+
in_channels: int,
|
| 801 |
+
prev_output_channel: int,
|
| 802 |
+
out_channels: int,
|
| 803 |
+
temb_channels: int,
|
| 804 |
+
dropout: float = 0.0,
|
| 805 |
+
num_layers: int = 1,
|
| 806 |
+
resnet_eps: float = 1e-6,
|
| 807 |
+
resnet_time_scale_shift: str = "default",
|
| 808 |
+
resnet_act_fn: str = "swish",
|
| 809 |
+
resnet_groups: int = 32,
|
| 810 |
+
resnet_pre_norm: bool = True,
|
| 811 |
+
output_scale_factor=1.0,
|
| 812 |
+
add_upsample=True,
|
| 813 |
+
use_inflated_groupnorm=False,
|
| 814 |
+
use_motion_module=None,
|
| 815 |
+
motion_module_type=None,
|
| 816 |
+
motion_module_kwargs=None,
|
| 817 |
+
):
|
| 818 |
+
super().__init__()
|
| 819 |
+
resnets = []
|
| 820 |
+
motion_modules = []
|
| 821 |
+
|
| 822 |
+
for i in range(num_layers):
|
| 823 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 824 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 825 |
+
|
| 826 |
+
resnets.append(
|
| 827 |
+
ResnetBlock3D(
|
| 828 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 829 |
+
out_channels=out_channels,
|
| 830 |
+
temb_channels=temb_channels,
|
| 831 |
+
eps=resnet_eps,
|
| 832 |
+
groups=resnet_groups,
|
| 833 |
+
dropout=dropout,
|
| 834 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 835 |
+
non_linearity=resnet_act_fn,
|
| 836 |
+
output_scale_factor=output_scale_factor,
|
| 837 |
+
pre_norm=resnet_pre_norm,
|
| 838 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 839 |
+
)
|
| 840 |
+
)
|
| 841 |
+
motion_modules.append(
|
| 842 |
+
get_motion_module(
|
| 843 |
+
in_channels=out_channels,
|
| 844 |
+
motion_module_type=motion_module_type,
|
| 845 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 846 |
+
)
|
| 847 |
+
if use_motion_module
|
| 848 |
+
else None
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
self.resnets = nn.ModuleList(resnets)
|
| 852 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 853 |
+
|
| 854 |
+
if add_upsample:
|
| 855 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 856 |
+
else:
|
| 857 |
+
self.upsamplers = None
|
| 858 |
+
|
| 859 |
+
self.gradient_checkpointing = False
|
| 860 |
+
|
| 861 |
+
def forward(
|
| 862 |
+
self,
|
| 863 |
+
hidden_states,
|
| 864 |
+
res_hidden_states_tuple,
|
| 865 |
+
temb=None,
|
| 866 |
+
upsample_size=None,
|
| 867 |
+
encoder_hidden_states=None,
|
| 868 |
+
):
|
| 869 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
| 870 |
+
# pop res hidden states
|
| 871 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 872 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 873 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 874 |
+
|
| 875 |
+
if self.training and self.gradient_checkpointing:
|
| 876 |
+
|
| 877 |
+
def create_custom_forward(module):
|
| 878 |
+
def custom_forward(*inputs):
|
| 879 |
+
return module(*inputs)
|
| 880 |
+
|
| 881 |
+
return custom_forward
|
| 882 |
+
|
| 883 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 884 |
+
if motion_module is not None:
|
| 885 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 886 |
+
create_custom_forward(motion_module),
|
| 887 |
+
hidden_states.requires_grad_(),
|
| 888 |
+
temb,
|
| 889 |
+
encoder_hidden_states,
|
| 890 |
+
)
|
| 891 |
+
else:
|
| 892 |
+
hidden_states = resnet(hidden_states, temb)
|
| 893 |
+
hidden_states = (
|
| 894 |
+
motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
|
| 895 |
+
if motion_module is not None
|
| 896 |
+
else hidden_states
|
| 897 |
+
)
|
| 898 |
+
|
| 899 |
+
if self.upsamplers is not None:
|
| 900 |
+
for upsampler in self.upsamplers:
|
| 901 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 902 |
+
|
| 903 |
+
return hidden_states
|
latentsync/models/utils.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
def zero_module(module):
|
| 16 |
+
# Zero out the parameters of a module and return it.
|
| 17 |
+
for p in module.parameters():
|
| 18 |
+
p.detach().zero_()
|
| 19 |
+
return module
|
{pipelines β latentsync/pipelines}/lipsync_pipeline.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/__init__.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/__init__.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/utils.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_finetune.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/third_party/VideoMAEv2/videomaev2_pretrain.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/third_party/__init__.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/utils/__init__.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/utils/data_utils.py
RENAMED
|
File without changes
|
{trepa β latentsync/trepa}/utils/metric_utils.py
RENAMED
|
File without changes
|
{utils β latentsync/utils}/affine_transform.py
RENAMED
|
File without changes
|
{utils β latentsync/utils}/audio.py
RENAMED
|
File without changes
|
{utils β latentsync/utils}/av_reader.py
RENAMED
|
File without changes
|
{utils β latentsync/utils}/image_processor.py
RENAMED
|
File without changes
|
latentsync/utils/mask.png
ADDED
|
{utils β latentsync/utils}/util.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/audio2feature.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/__init__.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/__main__.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/merges.txt
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/special_tokens_map.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/tokenizer_config.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/gpt2/vocab.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/mel_filters.npz
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/added_tokens.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/merges.txt
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/special_tokens_map.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/tokenizer_config.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/assets/multilingual/vocab.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/audio.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/decoding.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/model.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/__init__.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/basic.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/english.json
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/normalizers/english.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/tokenizer.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/transcribe.py
RENAMED
|
File without changes
|
{whisper β latentsync/whisper}/whisper/utils.py
RENAMED
|
File without changes
|