Spaces:
Paused
Paused
Update app.py
Browse filescreated and separared two versioons of code
app.py
CHANGED
|
@@ -1,7 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
from threading import Thread
|
| 4 |
from typing import Iterable, Dict, Any, Optional, List
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
|
@@ -18,6 +22,35 @@ from transformers import (
|
|
| 18 |
from gradio.themes import Soft
|
| 19 |
from gradio.themes.utils import colors, fonts, sizes
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# -----------------------------
|
| 22 |
# Private repo: dynamic import
|
| 23 |
# -----------------------------
|
|
@@ -28,8 +61,7 @@ REPO_ID = "IFMedTech/Medibot_OCR_model" # private backend repo
|
|
| 28 |
|
| 29 |
# Map filenames to exported class names
|
| 30 |
PY_MODULES = {
|
| 31 |
-
|
| 32 |
-
"ner.py": "ClinicalNER",
|
| 33 |
"tfidf_phonetic.py": "TfidfPhoneticMatcher",
|
| 34 |
"symspell_matcher.py": "SymSpellMatcher",
|
| 35 |
"rapidfuzz_matcher.py": "RapidFuzzMatcher",
|
|
@@ -191,10 +223,8 @@ if not use_cuda:
|
|
| 191 |
model_d.to(device)
|
| 192 |
|
| 193 |
# ----------------------------
|
| 194 |
-
# GENERATION (OCR →
|
| 195 |
# ----------------------------
|
| 196 |
-
MAX_MAX_NEW_TOKENS = 4096
|
| 197 |
-
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 198 |
|
| 199 |
@spaces.GPU
|
| 200 |
def generate_image(model_name: str,
|
|
@@ -207,10 +237,9 @@ def generate_image(model_name: str,
|
|
| 207 |
repetition_penalty: float,
|
| 208 |
spell_algo: str):
|
| 209 |
"""
|
| 210 |
-
1) Stream OCR tokens to Raw output
|
| 211 |
-
2)
|
| 212 |
-
3)
|
| 213 |
-
4) Markdown shows OCR + NER list + spell-check top-5 suggestions with scores.
|
| 214 |
"""
|
| 215 |
if image is None:
|
| 216 |
yield "Please upload an image.", "Please upload an image."
|
|
@@ -257,87 +286,82 @@ def generate_image(model_name: str,
|
|
| 257 |
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 258 |
thread.start()
|
| 259 |
|
| 260 |
-
# 1) Live OCR streaming to Raw
|
| 261 |
buffer = ""
|
| 262 |
for new_text in streamer:
|
| 263 |
buffer += new_text.replace("<|im_end|>", "")
|
| 264 |
time.sleep(0.01)
|
| 265 |
yield buffer, buffer
|
| 266 |
|
| 267 |
-
# Final raw
|
| 268 |
-
final_ocr_text = buffer
|
| 269 |
-
|
| 270 |
-
# 2) Clinical NER
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
meds = [line.strip() for line in raw_ocr_text.split('\n') if line.strip()]
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
# Build Markdown with OCR + NER section
|
| 287 |
-
md = final_ocr_text
|
| 288 |
-
md += "\n\n---\n### Clinical NER (Medications)\n"
|
| 289 |
-
if meds:
|
| 290 |
-
for m in meds:
|
| 291 |
-
md += f"- {m}\n"
|
| 292 |
-
else:
|
| 293 |
-
md += "- None detected\n"
|
| 294 |
|
| 295 |
-
# 3)
|
| 296 |
spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 297 |
corr: Dict[str, List] = {}
|
| 298 |
|
| 299 |
try:
|
| 300 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
if spell_algo == "TF-IDF + Phonetic" and "TfidfPhoneticMatcher" in priv_classes:
|
| 302 |
Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 303 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs", ngram_size=3, phonetic_weight=0.4)
|
| 304 |
-
corr = checker.match_list(
|
| 305 |
|
| 306 |
elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 307 |
Cls = priv_classes["SymSpellMatcher"]
|
| 308 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs", max_edit=2, prefix_len=7)
|
| 309 |
-
corr = checker.match_list(
|
| 310 |
|
| 311 |
elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
| 312 |
Cls = priv_classes["RapidFuzzMatcher"]
|
| 313 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 314 |
-
corr = checker.match_list(
|
| 315 |
else:
|
| 316 |
spell_section += "- Spell-check backend unavailable.\n"
|
| 317 |
else:
|
| 318 |
-
spell_section += "- No
|
| 319 |
except Exception as e:
|
| 320 |
spell_section += f"- Spell-check error: {e}\n"
|
| 321 |
|
| 322 |
-
# Format suggestions (top-5 with
|
| 323 |
if corr:
|
| 324 |
-
for raw in
|
| 325 |
suggestions = corr.get(raw, [])
|
| 326 |
if suggestions:
|
| 327 |
spell_section += f"- **{raw}**\n"
|
| 328 |
for cand, score in suggestions:
|
| 329 |
-
|
|
|
|
| 330 |
else:
|
| 331 |
spell_section += f"- **{raw}**\n - (no suggestions)\n"
|
| 332 |
|
| 333 |
-
final_md =
|
| 334 |
|
| 335 |
-
# 4) Final yield: raw unchanged; Markdown with
|
| 336 |
yield final_ocr_text, final_md
|
| 337 |
|
| 338 |
# ----------------------------
|
| 339 |
# UI
|
| 340 |
# ----------------------------
|
|
|
|
| 341 |
image_examples = [
|
| 342 |
["OCR the content perfectly.", "examples/3.jpg"],
|
| 343 |
["Perform OCR on the image.", "examples/1.jpg"],
|
|
@@ -345,10 +369,9 @@ image_examples = [
|
|
| 345 |
]
|
| 346 |
|
| 347 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 348 |
-
gr.Markdown("# **Handwritten Doctor's Prescription Reading**", elem_id="main-title")
|
| 349 |
with gr.Row():
|
| 350 |
with gr.Column(scale=2):
|
| 351 |
-
#image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 352 |
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 353 |
image_submit = gr.Button("Submit", variant="primary")
|
| 354 |
gr.Examples(examples=image_examples, inputs=[image_upload])
|
|
@@ -370,8 +393,6 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 370 |
with gr.Column(scale=3):
|
| 371 |
gr.Markdown("## Output", elem_id="output-title")
|
| 372 |
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 373 |
-
with gr.Accordion("(Result.md)", open=False):
|
| 374 |
-
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 375 |
|
| 376 |
model_choice = gr.Radio(
|
| 377 |
choices=["Chandra-OCR", "Dots.OCR"],
|
|
@@ -381,9 +402,406 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 381 |
|
| 382 |
image_submit.click(
|
| 383 |
fn=generate_image,
|
| 384 |
-
inputs=[model_choice,
|
| 385 |
-
outputs=[output
|
| 386 |
)
|
| 387 |
|
| 388 |
if __name__ == "__main__":
|
| 389 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
###################################### version 2 ########################################################
|
| 2 |
+
|
| 3 |
+
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
from threading import Thread
|
| 7 |
from typing import Iterable, Dict, Any, Optional, List
|
| 8 |
+
import pandas as pd # For reading Excel file
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
|
|
|
| 22 |
from gradio.themes import Soft
|
| 23 |
from gradio.themes.utils import colors, fonts, sizes
|
| 24 |
|
| 25 |
+
# -----------------------------
|
| 26 |
+
# Character Error Rate (CER) Calculation
|
| 27 |
+
# -----------------------------
|
| 28 |
+
|
| 29 |
+
def levenshtein(a: str, b: str) -> int:
|
| 30 |
+
"""Levenshtein distance to calculate CER."""
|
| 31 |
+
a, b = a.lower(), b.lower()
|
| 32 |
+
if a == b:
|
| 33 |
+
return 0
|
| 34 |
+
if not a:
|
| 35 |
+
return len(b)
|
| 36 |
+
if not b:
|
| 37 |
+
return len(a)
|
| 38 |
+
dp = list(range(len(b) + 1))
|
| 39 |
+
for i, ca in enumerate(a, 1):
|
| 40 |
+
prev = dp[0]
|
| 41 |
+
dp[0] = i
|
| 42 |
+
for j, cb in enumerate(b, 1):
|
| 43 |
+
cur = dp[j]
|
| 44 |
+
cost = 0 if ca == cb else 1
|
| 45 |
+
dp[j] = min(dp[j] + 1, dp[j-1] + 1, prev + cost)
|
| 46 |
+
prev = cur
|
| 47 |
+
return dp[-1]
|
| 48 |
+
|
| 49 |
+
def character_error_rate(pred: str, target: str) -> float:
|
| 50 |
+
"""Calculate the Character Error Rate (CER)."""
|
| 51 |
+
distance = levenshtein(pred, target)
|
| 52 |
+
return (distance / len(target)) * 100 if len(target) > 0 else 0
|
| 53 |
+
|
| 54 |
# -----------------------------
|
| 55 |
# Private repo: dynamic import
|
| 56 |
# -----------------------------
|
|
|
|
| 61 |
|
| 62 |
# Map filenames to exported class names
|
| 63 |
PY_MODULES = {
|
| 64 |
+
"ner.py": "ClinicalNER", # NER is only applied for Dots.OCR output
|
|
|
|
| 65 |
"tfidf_phonetic.py": "TfidfPhoneticMatcher",
|
| 66 |
"symspell_matcher.py": "SymSpellMatcher",
|
| 67 |
"rapidfuzz_matcher.py": "RapidFuzzMatcher",
|
|
|
|
| 223 |
model_d.to(device)
|
| 224 |
|
| 225 |
# ----------------------------
|
| 226 |
+
# GENERATION (OCR → Spell-check)
|
| 227 |
# ----------------------------
|
|
|
|
|
|
|
| 228 |
|
| 229 |
@spaces.GPU
|
| 230 |
def generate_image(model_name: str,
|
|
|
|
| 237 |
repetition_penalty: float,
|
| 238 |
spell_algo: str):
|
| 239 |
"""
|
| 240 |
+
1) Stream OCR tokens to Raw output.
|
| 241 |
+
2) Directly apply spell-check algorithms (TF-IDF+Phonetic, SymSpell, or RapidFuzz).
|
| 242 |
+
3) Only apply Clinical NER to Dots.OCR output, then apply spell-check on the result.
|
|
|
|
| 243 |
"""
|
| 244 |
if image is None:
|
| 245 |
yield "Please upload an image.", "Please upload an image."
|
|
|
|
| 286 |
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 287 |
thread.start()
|
| 288 |
|
| 289 |
+
# 1) Live OCR streaming to Raw
|
| 290 |
buffer = ""
|
| 291 |
for new_text in streamer:
|
| 292 |
buffer += new_text.replace("<|im_end|>", "")
|
| 293 |
time.sleep(0.01)
|
| 294 |
yield buffer, buffer
|
| 295 |
|
| 296 |
+
# Final raw OCR output (buffer)
|
| 297 |
+
final_ocr_text = buffer.strip()
|
| 298 |
+
|
| 299 |
+
# 2) Apply Clinical NER ONLY for Dots.OCR output
|
| 300 |
+
meds = []
|
| 301 |
+
if model_name == "Dots.OCR":
|
| 302 |
+
try:
|
| 303 |
+
if "ClinicalNER" in priv_classes:
|
| 304 |
+
ClinicalNER = priv_classes["ClinicalNER"]
|
| 305 |
+
ner = ClinicalNER(token=HF_TOKEN) # pass model_id=... if using your own model
|
| 306 |
+
meds = ner(final_ocr_text) or []
|
| 307 |
+
print("Extracted meds:", meds) # Print extracted meds
|
| 308 |
+
else:
|
| 309 |
+
print("[NER] ClinicalNER not available.")
|
| 310 |
+
except Exception as e:
|
| 311 |
+
print(f"[NER] Error running ClinicalNER: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
+
# 3) Apply selected spell-check algorithm (directly on raw OCR output or NER output)
|
| 314 |
spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 315 |
corr: Dict[str, List] = {}
|
| 316 |
|
| 317 |
try:
|
| 318 |
+
if final_ocr_text and drug_xlsx_path:
|
| 319 |
+
# Print meds and the number of rows in the drug_xlsx_path
|
| 320 |
+
print("Meds:", meds)
|
| 321 |
+
print("Rows in drug_xlsx_path:", len(pd.read_excel(drug_xlsx_path)))
|
| 322 |
+
|
| 323 |
if spell_algo == "TF-IDF + Phonetic" and "TfidfPhoneticMatcher" in priv_classes:
|
| 324 |
Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 325 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs", ngram_size=3, phonetic_weight=0.4)
|
| 326 |
+
corr = checker.match_list([final_ocr_text], top_k=5, tfidf_threshold=0.15)
|
| 327 |
|
| 328 |
elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 329 |
Cls = priv_classes["SymSpellMatcher"]
|
| 330 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs", max_edit=2, prefix_len=7)
|
| 331 |
+
corr = checker.match_list([final_ocr_text], top_k=5, min_score=0.4)
|
| 332 |
|
| 333 |
elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
| 334 |
Cls = priv_classes["RapidFuzzMatcher"]
|
| 335 |
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 336 |
+
corr = checker.match_list([final_ocr_text], top_k=5, threshold=70.0)
|
| 337 |
else:
|
| 338 |
spell_section += "- Spell-check backend unavailable.\n"
|
| 339 |
else:
|
| 340 |
+
spell_section += "- No OCR output or Excel dictionary missing.\n"
|
| 341 |
except Exception as e:
|
| 342 |
spell_section += f"- Spell-check error: {e}\n"
|
| 343 |
|
| 344 |
+
# Format spell-check suggestions (top-5 with CER)
|
| 345 |
if corr:
|
| 346 |
+
for raw in [final_ocr_text]:
|
| 347 |
suggestions = corr.get(raw, [])
|
| 348 |
if suggestions:
|
| 349 |
spell_section += f"- **{raw}**\n"
|
| 350 |
for cand, score in suggestions:
|
| 351 |
+
cer = character_error_rate(cand, raw) # Calculate CER
|
| 352 |
+
spell_section += f" - {cand} (score={score:.3f}, CER={cer:.3f}%)\n"
|
| 353 |
else:
|
| 354 |
spell_section += f"- **{raw}**\n - (no suggestions)\n"
|
| 355 |
|
| 356 |
+
final_md = spell_section # Only spell-check suggestions
|
| 357 |
|
| 358 |
+
# 4) Final yield: raw unchanged; Markdown with spell-check
|
| 359 |
yield final_ocr_text, final_md
|
| 360 |
|
| 361 |
# ----------------------------
|
| 362 |
# UI
|
| 363 |
# ----------------------------
|
| 364 |
+
|
| 365 |
image_examples = [
|
| 366 |
["OCR the content perfectly.", "examples/3.jpg"],
|
| 367 |
["Perform OCR on the image.", "examples/1.jpg"],
|
|
|
|
| 369 |
]
|
| 370 |
|
| 371 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 372 |
+
gr.Markdown("# **Handwritten Doctor's Prescription Reading V2**", elem_id="main-title")
|
| 373 |
with gr.Row():
|
| 374 |
with gr.Column(scale=2):
|
|
|
|
| 375 |
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 376 |
image_submit = gr.Button("Submit", variant="primary")
|
| 377 |
gr.Examples(examples=image_examples, inputs=[image_upload])
|
|
|
|
| 393 |
with gr.Column(scale=3):
|
| 394 |
gr.Markdown("## Output", elem_id="output-title")
|
| 395 |
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
|
|
|
|
|
|
| 396 |
|
| 397 |
model_choice = gr.Radio(
|
| 398 |
choices=["Chandra-OCR", "Dots.OCR"],
|
|
|
|
| 402 |
|
| 403 |
image_submit.click(
|
| 404 |
fn=generate_image,
|
| 405 |
+
inputs=[model_choice, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty, spell_choice],
|
| 406 |
+
outputs=[output]
|
| 407 |
)
|
| 408 |
|
| 409 |
if __name__ == "__main__":
|
| 410 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
##################################### version 1 #######################################################
|
| 418 |
+
|
| 419 |
+
# import os
|
| 420 |
+
# import time
|
| 421 |
+
# from threading import Thread
|
| 422 |
+
# from typing import Iterable, Dict, Any, Optional, List
|
| 423 |
+
|
| 424 |
+
# import gradio as gr
|
| 425 |
+
# import spaces
|
| 426 |
+
# import torch
|
| 427 |
+
# from PIL import Image
|
| 428 |
+
|
| 429 |
+
# from transformers import (
|
| 430 |
+
# Qwen3VLForConditionalGeneration,
|
| 431 |
+
# AutoModelForCausalLM,
|
| 432 |
+
# AutoProcessor,
|
| 433 |
+
# TextIteratorStreamer,
|
| 434 |
+
# )
|
| 435 |
+
|
| 436 |
+
# from gradio.themes import Soft
|
| 437 |
+
# from gradio.themes.utils import colors, fonts, sizes
|
| 438 |
+
|
| 439 |
+
# # -----------------------------
|
| 440 |
+
# # Private repo: dynamic import
|
| 441 |
+
# # -----------------------------
|
| 442 |
+
# import importlib.util
|
| 443 |
+
# from huggingface_hub import hf_hub_download
|
| 444 |
+
|
| 445 |
+
# REPO_ID = "IFMedTech/Medibot_OCR_model" # private backend repo
|
| 446 |
+
|
| 447 |
+
# # Map filenames to exported class names
|
| 448 |
+
# PY_MODULES = {
|
| 449 |
+
|
| 450 |
+
# "ner.py": "ClinicalNER",
|
| 451 |
+
# "tfidf_phonetic.py": "TfidfPhoneticMatcher",
|
| 452 |
+
# "symspell_matcher.py": "SymSpellMatcher",
|
| 453 |
+
# "rapidfuzz_matcher.py": "RapidFuzzMatcher",
|
| 454 |
+
# # 'drug_dictionary.xlsx' is data, not a module
|
| 455 |
+
# }
|
| 456 |
+
|
| 457 |
+
# HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
|
| 458 |
+
|
| 459 |
+
# def _dynamic_import(module_path: str, class_name: str):
|
| 460 |
+
# spec = importlib.util.spec_from_file_location(class_name, module_path)
|
| 461 |
+
# module = importlib.util.module_from_spec(spec)
|
| 462 |
+
# spec.loader.exec_module(module) # type: ignore
|
| 463 |
+
# return getattr(module, class_name)
|
| 464 |
+
|
| 465 |
+
# # Load private classes and Excel dictionary
|
| 466 |
+
# priv_classes: Dict[str, Any] = {}
|
| 467 |
+
# drug_xlsx_path: Optional[str] = None
|
| 468 |
+
# try:
|
| 469 |
+
# if HF_TOKEN is None:
|
| 470 |
+
# print("[Private] WARNING: HUGGINGFACE_TOKEN not set; NER/Spell-check will be unavailable.")
|
| 471 |
+
# else:
|
| 472 |
+
# for fname, cls in PY_MODULES.items():
|
| 473 |
+
# path = hf_hub_download(repo_id=REPO_ID, filename=fname, token=HF_TOKEN)
|
| 474 |
+
# if cls:
|
| 475 |
+
# priv_classes[cls] = _dynamic_import(path, cls)
|
| 476 |
+
# print(f"[Private] Loaded class: {cls} from {fname}")
|
| 477 |
+
# drug_xlsx_path = hf_hub_download(repo_id=REPO_ID, filename="Medibot_Drugs_Cleaned_Updated.xlsx", token=HF_TOKEN)
|
| 478 |
+
# print(f"[Private] Downloaded Excel at: {drug_xlsx_path}")
|
| 479 |
+
# except Exception as e:
|
| 480 |
+
# print(f"[Private] ERROR loading private backend: {e}")
|
| 481 |
+
# priv_classes = {}
|
| 482 |
+
# drug_xlsx_path = None
|
| 483 |
+
|
| 484 |
+
# # ----------------------------
|
| 485 |
+
# # THEME
|
| 486 |
+
# # ----------------------------
|
| 487 |
+
# colors.steel_blue = colors.Color(
|
| 488 |
+
# name="steel_blue",
|
| 489 |
+
# c50="#EBF3F8",
|
| 490 |
+
# c100="#D3E5F0",
|
| 491 |
+
# c200="#A8CCE1",
|
| 492 |
+
# c300="#7DB3D2",
|
| 493 |
+
# c400="#529AC3",
|
| 494 |
+
# c500="#4682B4",
|
| 495 |
+
# c600="#3E72A0",
|
| 496 |
+
# c700="#36638C",
|
| 497 |
+
# c800="#2E5378",
|
| 498 |
+
# c900="#264364",
|
| 499 |
+
# c950="#1E3450",
|
| 500 |
+
# )
|
| 501 |
+
|
| 502 |
+
# class SteelBlueTheme(Soft):
|
| 503 |
+
# def __init__(
|
| 504 |
+
# self,
|
| 505 |
+
# *,
|
| 506 |
+
# primary_hue: colors.Color | str = colors.gray,
|
| 507 |
+
# secondary_hue: colors.Color | str = colors.steel_blue,
|
| 508 |
+
# neutral_hue: colors.Color | str = colors.slate,
|
| 509 |
+
# text_size: sizes.Size | str = sizes.text_lg,
|
| 510 |
+
# font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 511 |
+
# fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 512 |
+
# ),
|
| 513 |
+
# font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 514 |
+
# fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 515 |
+
# ),
|
| 516 |
+
# ):
|
| 517 |
+
# super().__init__(
|
| 518 |
+
# primary_hue=primary_hue,
|
| 519 |
+
# secondary_hue=secondary_hue,
|
| 520 |
+
# neutral_hue=neutral_hue,
|
| 521 |
+
# text_size=text_size,
|
| 522 |
+
# font=font,
|
| 523 |
+
# font_mono=font_mono,
|
| 524 |
+
# )
|
| 525 |
+
# super().set(
|
| 526 |
+
# background_fill_primary="*primary_50",
|
| 527 |
+
# background_fill_primary_dark="*primary_900",
|
| 528 |
+
# body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 529 |
+
# body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 530 |
+
# button_primary_text_color="white",
|
| 531 |
+
# button_primary_text_color_hover="white",
|
| 532 |
+
# button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 533 |
+
# button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 534 |
+
# button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 535 |
+
# button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 536 |
+
# button_secondary_text_color="black",
|
| 537 |
+
# button_secondary_text_color_hover="white",
|
| 538 |
+
# button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 539 |
+
# button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 540 |
+
# button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 541 |
+
# button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 542 |
+
# slider_color="*secondary_500",
|
| 543 |
+
# slider_color_dark="*secondary_600",
|
| 544 |
+
# block_title_text_weight="600",
|
| 545 |
+
# block_border_width="3px",
|
| 546 |
+
# block_shadow="*shadow_drop_lg",
|
| 547 |
+
# button_primary_shadow="*shadow_drop_lg",
|
| 548 |
+
# button_large_padding="11px",
|
| 549 |
+
# color_accent_soft="*primary_100",
|
| 550 |
+
# block_label_background_fill="*primary_200",
|
| 551 |
+
# )
|
| 552 |
+
|
| 553 |
+
# steel_blue_theme = SteelBlueTheme()
|
| 554 |
+
|
| 555 |
+
# css = """
|
| 556 |
+
# #main-title h1 { font-size: 2.3em !important; }
|
| 557 |
+
# #output-title h2 { font-size: 2.1em !important; }
|
| 558 |
+
# """
|
| 559 |
+
|
| 560 |
+
# # ----------------------------
|
| 561 |
+
# # RUNTIME / DEVICE
|
| 562 |
+
# # ----------------------------
|
| 563 |
+
# os.environ.setdefault("CUDA_VISIBLE_DEVICES", "0")
|
| 564 |
+
# print("CUDA_VISIBLE_DEVICES =", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 565 |
+
# print("torch.__version__ =", torch.__version__)
|
| 566 |
+
# print("torch.version.cuda =", torch.version.cuda)
|
| 567 |
+
# print("cuda available =", torch.cuda.is_available())
|
| 568 |
+
# print("cuda device count =", torch.cuda.device_count())
|
| 569 |
+
# if torch.cuda.is_available():
|
| 570 |
+
# print("using device =", torch.cuda.get_device_name(0))
|
| 571 |
+
|
| 572 |
+
# use_cuda = torch.cuda.is_available()
|
| 573 |
+
# device = torch.device("cuda:0" if use_cuda else "cpu")
|
| 574 |
+
# if use_cuda:
|
| 575 |
+
# torch.backends.cudnn.benchmark = True
|
| 576 |
+
|
| 577 |
+
# DTYPE_FP16 = torch.float16 if use_cuda else torch.float32
|
| 578 |
+
# DTYPE_BF16 = torch.bfloat16 if use_cuda else torch.float32
|
| 579 |
+
|
| 580 |
+
# # ----------------------------
|
| 581 |
+
# # OCR MODELS: Chandra-OCR + Dots.OCR
|
| 582 |
+
# # ----------------------------
|
| 583 |
+
# # 1) Chandra-OCR (Qwen3VL)
|
| 584 |
+
# MODEL_ID_V = "datalab-to/chandra"
|
| 585 |
+
# processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 586 |
+
# model_v = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 587 |
+
# MODEL_ID_V, trust_remote_code=True, torch_dtype=DTYPE_FP16
|
| 588 |
+
# ).to(device).eval()
|
| 589 |
+
|
| 590 |
+
# # 2) Dots.OCR (flash_attn2 if available, else SDPA)
|
| 591 |
+
# MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
|
| 592 |
+
# processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
| 593 |
+
# attn_impl = "sdpa"
|
| 594 |
+
# try:
|
| 595 |
+
# import flash_attn # noqa: F401
|
| 596 |
+
# if use_cuda:
|
| 597 |
+
# attn_impl = "flash_attention_2"
|
| 598 |
+
# except Exception:
|
| 599 |
+
# attn_impl = "sdpa"
|
| 600 |
+
|
| 601 |
+
# model_d = AutoModelForCausalLM.from_pretrained(
|
| 602 |
+
# MODEL_PATH_D,
|
| 603 |
+
# attn_implementation=attn_impl,
|
| 604 |
+
# torch_dtype=DTYPE_BF16,
|
| 605 |
+
# device_map="auto" if use_cuda else None,
|
| 606 |
+
# trust_remote_code=True
|
| 607 |
+
# ).eval()
|
| 608 |
+
# if not use_cuda:
|
| 609 |
+
# model_d.to(device)
|
| 610 |
+
|
| 611 |
+
# # ----------------------------
|
| 612 |
+
# # GENERATION (OCR → NER → Spell-check)
|
| 613 |
+
# # ----------------------------
|
| 614 |
+
# MAX_MAX_NEW_TOKENS = 4096
|
| 615 |
+
# DEFAULT_MAX_NEW_TOKENS = 2048
|
| 616 |
+
|
| 617 |
+
# @spaces.GPU
|
| 618 |
+
# def generate_image(model_name: str,
|
| 619 |
+
# text: str,
|
| 620 |
+
# image: Image.Image,
|
| 621 |
+
# max_new_tokens: int,
|
| 622 |
+
# temperature: float,
|
| 623 |
+
# top_p: float,
|
| 624 |
+
# top_k: int,
|
| 625 |
+
# repetition_penalty: float,
|
| 626 |
+
# spell_algo: str):
|
| 627 |
+
# """
|
| 628 |
+
# 1) Stream OCR tokens to Raw output (unchanged).
|
| 629 |
+
# 2) After stream completes, run ClinicalNER on final raw text → list[str] meds.
|
| 630 |
+
# 3) Apply selected spell-check (TF-IDF+Phonetic / SymSpell / RapidFuzz) using Excel dict.
|
| 631 |
+
# 4) Markdown shows OCR + NER list + spell-check top-5 suggestions with scores.
|
| 632 |
+
# """
|
| 633 |
+
# if image is None:
|
| 634 |
+
# yield "Please upload an image.", "Please upload an image."
|
| 635 |
+
# return
|
| 636 |
+
|
| 637 |
+
# if model_name == "Chandra-OCR":
|
| 638 |
+
# processor, model = processor_v, model_v
|
| 639 |
+
# elif model_name == "Dots.OCR":
|
| 640 |
+
# processor, model = processor_d, model_d
|
| 641 |
+
# else:
|
| 642 |
+
# yield "Invalid model selected.", "Invalid model selected."
|
| 643 |
+
# return
|
| 644 |
+
|
| 645 |
+
# # Build prompt
|
| 646 |
+
# messages = [{
|
| 647 |
+
# "role": "user",
|
| 648 |
+
# "content": [
|
| 649 |
+
# {"type": "image"},
|
| 650 |
+
# {"type": "text", "text": text},
|
| 651 |
+
# ]
|
| 652 |
+
# }]
|
| 653 |
+
# prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 654 |
+
|
| 655 |
+
# # Preprocess
|
| 656 |
+
# inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True)
|
| 657 |
+
# inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
|
| 658 |
+
|
| 659 |
+
# # Streamer
|
| 660 |
+
# tokenizer = getattr(processor, "tokenizer", None) or processor
|
| 661 |
+
# streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 662 |
+
|
| 663 |
+
# gen_kwargs = dict(
|
| 664 |
+
# **inputs,
|
| 665 |
+
# streamer=streamer,
|
| 666 |
+
# max_new_tokens=max_new_tokens,
|
| 667 |
+
# do_sample=True,
|
| 668 |
+
# temperature=temperature,
|
| 669 |
+
# top_p=top_p,
|
| 670 |
+
# top_k=top_k,
|
| 671 |
+
# repetition_penalty=repetition_penalty,
|
| 672 |
+
# )
|
| 673 |
+
|
| 674 |
+
# # Start generation
|
| 675 |
+
# thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 676 |
+
# thread.start()
|
| 677 |
+
|
| 678 |
+
# # 1) Live OCR streaming to Raw (and mirror to Markdown during stream)
|
| 679 |
+
# buffer = ""
|
| 680 |
+
# for new_text in streamer:
|
| 681 |
+
# buffer += new_text.replace("<|im_end|>", "")
|
| 682 |
+
# time.sleep(0.01)
|
| 683 |
+
# yield buffer, buffer
|
| 684 |
+
|
| 685 |
+
# # Final raw text for downstream processing
|
| 686 |
+
# final_ocr_text = buffer
|
| 687 |
+
|
| 688 |
+
# # 2) Clinical NER (from private repo)
|
| 689 |
+
# # meds: List[str] = []
|
| 690 |
+
# # try:
|
| 691 |
+
# # if "ClinicalNER" in priv_classes:
|
| 692 |
+
# # ClinicalNER = priv_classes["ClinicalNER"]
|
| 693 |
+
# # ner = ClinicalNER(token=HF_TOKEN) # pass model_id=... if using your own model
|
| 694 |
+
# # meds = ner(final_ocr_text) or []
|
| 695 |
+
# # else:
|
| 696 |
+
# # print("[NER] ClinicalNER not available.")
|
| 697 |
+
# # except Exception as e:
|
| 698 |
+
# # print(f"[NER] Error running ClinicalNER: {e}")
|
| 699 |
+
|
| 700 |
+
# raw_ocr_text = buffer.strip()
|
| 701 |
+
# meds = [line.strip() for line in raw_ocr_text.split('\n') if line.strip()]
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
# # Build Markdown with OCR + NER section
|
| 705 |
+
# md = final_ocr_text
|
| 706 |
+
# md += "\n\n---\n### Clinical NER (Medications)\n"
|
| 707 |
+
# if meds:
|
| 708 |
+
# for m in meds:
|
| 709 |
+
# md += f"- {m}\n"
|
| 710 |
+
# else:
|
| 711 |
+
# md += "- None detected\n"
|
| 712 |
+
|
| 713 |
+
# # 3) Spell-check on NER output using selected approach + Excel dict
|
| 714 |
+
# spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 715 |
+
# corr: Dict[str, List] = {}
|
| 716 |
+
|
| 717 |
+
# try:
|
| 718 |
+
# if meds and drug_xlsx_path:
|
| 719 |
+
# if spell_algo == "TF-IDF + Phonetic" and "TfidfPhoneticMatcher" in priv_classes:
|
| 720 |
+
# Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 721 |
+
# checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs", ngram_size=3, phonetic_weight=0.4)
|
| 722 |
+
# corr = checker.match_list(meds, top_k=5, tfidf_threshold=0.15)
|
| 723 |
+
|
| 724 |
+
# elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 725 |
+
# Cls = priv_classes["SymSpellMatcher"]
|
| 726 |
+
# checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs", max_edit=2, prefix_len=7)
|
| 727 |
+
# corr = checker.match_list(meds, top_k=5, min_score=0.4)
|
| 728 |
+
|
| 729 |
+
# elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
| 730 |
+
# Cls = priv_classes["RapidFuzzMatcher"]
|
| 731 |
+
# checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 732 |
+
# corr = checker.match_list(meds, top_k=5, threshold=70.0)
|
| 733 |
+
# else:
|
| 734 |
+
# spell_section += "- Spell-check backend unavailable.\n"
|
| 735 |
+
# else:
|
| 736 |
+
# spell_section += "- No NER output or Excel dictionary missing.\n"
|
| 737 |
+
# except Exception as e:
|
| 738 |
+
# spell_section += f"- Spell-check error: {e}\n"
|
| 739 |
+
|
| 740 |
+
# # Format suggestions (top-5 with scores)
|
| 741 |
+
# if corr:
|
| 742 |
+
# for raw in meds:
|
| 743 |
+
# suggestions = corr.get(raw, [])
|
| 744 |
+
# if suggestions:
|
| 745 |
+
# spell_section += f"- **{raw}**\n"
|
| 746 |
+
# for cand, score in suggestions:
|
| 747 |
+
# spell_section += f" - {cand} (score={score:.3f})\n"
|
| 748 |
+
# else:
|
| 749 |
+
# spell_section += f"- **{raw}**\n - (no suggestions)\n"
|
| 750 |
+
|
| 751 |
+
# final_md = md + spell_section
|
| 752 |
+
|
| 753 |
+
# # 4) Final yield: raw unchanged; Markdown with NER + spell-check
|
| 754 |
+
# yield final_ocr_text, final_md
|
| 755 |
+
|
| 756 |
+
# # ----------------------------
|
| 757 |
+
# # UI
|
| 758 |
+
# # ----------------------------
|
| 759 |
+
# image_examples = [
|
| 760 |
+
# ["OCR the content perfectly.", "examples/3.jpg"],
|
| 761 |
+
# ["Perform OCR on the image.", "examples/1.jpg"],
|
| 762 |
+
# ["Extract the contents. [page].", "examples/2.jpg"],
|
| 763 |
+
# ]
|
| 764 |
+
|
| 765 |
+
# with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 766 |
+
# gr.Markdown("# **Handwritten Doctor's Prescription Reading**", elem_id="main-title")
|
| 767 |
+
# with gr.Row():
|
| 768 |
+
# with gr.Column(scale=2):
|
| 769 |
+
# #image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 770 |
+
# image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 771 |
+
# image_submit = gr.Button("Submit", variant="primary")
|
| 772 |
+
# gr.Examples(examples=image_examples, inputs=[image_upload])
|
| 773 |
+
|
| 774 |
+
# # Spell-check selection
|
| 775 |
+
# spell_choice = gr.Radio(
|
| 776 |
+
# choices=["TF-IDF + Phonetic", "SymSpell", "RapidFuzz"],
|
| 777 |
+
# label="Select Spell-check Approach",
|
| 778 |
+
# value="TF-IDF + Phonetic"
|
| 779 |
+
# )
|
| 780 |
+
|
| 781 |
+
# with gr.Accordion("Advanced options", open=False):
|
| 782 |
+
# max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 783 |
+
# temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
|
| 784 |
+
# top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 785 |
+
# top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 786 |
+
# repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
|
| 787 |
+
|
| 788 |
+
# with gr.Column(scale=3):
|
| 789 |
+
# gr.Markdown("## Output", elem_id="output-title")
|
| 790 |
+
# output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 791 |
+
# with gr.Accordion("(Result.md)", open=False):
|
| 792 |
+
# markdown_output = gr.Markdown(label="(Result.Md)")
|
| 793 |
+
|
| 794 |
+
# model_choice = gr.Radio(
|
| 795 |
+
# choices=["Chandra-OCR", "Dots.OCR"],
|
| 796 |
+
# label="Select OCR Model",
|
| 797 |
+
# value="Chandra-OCR"
|
| 798 |
+
# )
|
| 799 |
+
|
| 800 |
+
# image_submit.click(
|
| 801 |
+
# fn=generate_image,
|
| 802 |
+
# inputs=[model_choice,gr.State("Extract medicine or drugs names along with dosage amount or quantity") , image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty, spell_choice],
|
| 803 |
+
# outputs=[output, markdown_output]
|
| 804 |
+
# )
|
| 805 |
+
|
| 806 |
+
# if __name__ == "__main__":
|
| 807 |
+
# demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|