Spaces:
Sleeping
Sleeping
| from sentence_transformers import SentenceTransformer | |
| from sklearn.cluster import KMeans | |
| from memory_utils import get_history, decrypt_data | |
| import numpy as np | |
| class QuantumLearner: | |
| def __init__(self): | |
| # Koristimo lightweight multi-jezički model | |
| self.model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2') | |
| self.model.max_seq_length = 256 # Optimizacija za performanse | |
| def analyze_conversations(self, history_limit=1000): | |
| """Analizira razgovore i pronalazi ključne teme""" | |
| try: | |
| history = get_history(limit=history_limit) | |
| if not history: | |
| return {"info": "Nema dostupne povijesti za analizu"} | |
| # Dekriptiraj i kombinuj poruke | |
| texts = [ | |
| f"{decrypt_data(row[2])} → {decrypt_data(row[3])}" | |
| for row in history | |
| if len(row) >= 4 # Zaštita od nepotpunih podataka | |
| ] | |
| # Vektorizacija teksta |