Spaces:
Sleeping
Sleeping
Commit
Β·
d6cd6c2
1
Parent(s):
55d992f
Streaming interview feedback
Browse files- api/llm.py +87 -61
- app.py +2 -5
api/llm.py
CHANGED
|
@@ -13,21 +13,74 @@ class LLMManager:
|
|
| 13 |
self.is_demo = os.getenv("IS_DEMO")
|
| 14 |
self.demo_word_limit = os.getenv("DEMO_WORD_LIMIT")
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
try:
|
| 18 |
response = self.client.chat.completions.create(
|
| 19 |
model=self.config.llm.name,
|
| 20 |
-
messages=
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
{"role": "user", "content": "Ping!"},
|
| 24 |
-
],
|
| 25 |
)
|
| 26 |
-
if not response.choices:
|
| 27 |
-
raise APIError("LLM Test Connection Error", details="No choices in response")
|
| 28 |
-
return response.choices[0].message.content.strip()
|
| 29 |
except Exception as e:
|
| 30 |
-
raise APIError(f"LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def init_bot(self, problem=""):
|
| 33 |
system_prompt = self.prompts["coding_interviewer_prompt"]
|
|
@@ -50,20 +103,12 @@ class LLMManager:
|
|
| 50 |
if self.is_demo:
|
| 51 |
full_prompt += f" Keep your response very short and simple, no more than {self.demo_word_limit} words."
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
],
|
| 60 |
-
temperature=1.0,
|
| 61 |
-
)
|
| 62 |
-
if not response.choices:
|
| 63 |
-
raise APIError("LLM Problem Generation Error", details="No choices in response")
|
| 64 |
-
question = response.choices[0].message.content.strip()
|
| 65 |
-
except Exception as e:
|
| 66 |
-
raise APIError(f"LLM Problem Generation Error: Unexpected error: {e}")
|
| 67 |
|
| 68 |
chat_history = self.init_bot(question)
|
| 69 |
return question, chat_history
|
|
@@ -73,14 +118,7 @@ class LLMManager:
|
|
| 73 |
chat_history.append({"role": "user", "content": f"My latest code:\n{code}"})
|
| 74 |
chat_history.append({"role": "user", "content": message})
|
| 75 |
|
| 76 |
-
|
| 77 |
-
response = self.client.chat.completions.create(model=self.config.llm.name, messages=chat_history)
|
| 78 |
-
if not response.choices:
|
| 79 |
-
raise APIError("LLM Send Request Error", details="No choices in response")
|
| 80 |
-
reply = response.choices[0].message.content.strip()
|
| 81 |
-
except Exception as e:
|
| 82 |
-
raise APIError(f"LLM Send Request Error: Unexpected error: {e}")
|
| 83 |
-
|
| 84 |
chat_history.append({"role": "assistant", "content": reply})
|
| 85 |
|
| 86 |
if chat_display:
|
|
@@ -90,11 +128,8 @@ class LLMManager:
|
|
| 90 |
|
| 91 |
return chat_history, chat_display, "", code
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
if not chat_history or len(chat_history) <= 2:
|
| 96 |
-
yield "No interview content available to review."
|
| 97 |
-
|
| 98 |
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
|
| 99 |
|
| 100 |
system_prompt = self.prompts["grading_feedback_prompt"]
|
|
@@ -108,27 +143,18 @@ class LLMManager:
|
|
| 108 |
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
|
| 109 |
]
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
yield feedback
|
| 127 |
-
# else:
|
| 128 |
-
# response = self.client.chat.completions.create(
|
| 129 |
-
# model=self.config.llm.name,
|
| 130 |
-
# messages=messages,
|
| 131 |
-
# temperature=0.5,
|
| 132 |
-
# )
|
| 133 |
-
# feedback = response.choices[0].message.content.strip()
|
| 134 |
-
# return feedback
|
|
|
|
| 13 |
self.is_demo = os.getenv("IS_DEMO")
|
| 14 |
self.demo_word_limit = os.getenv("DEMO_WORD_LIMIT")
|
| 15 |
|
| 16 |
+
self.status = self.test_llm()
|
| 17 |
+
if self.status:
|
| 18 |
+
self.streaming = self.test_llm_stream()
|
| 19 |
+
else:
|
| 20 |
+
self.streaming = False
|
| 21 |
+
|
| 22 |
+
if self.streaming:
|
| 23 |
+
self.end_interview = self.end_interview_stream
|
| 24 |
+
else:
|
| 25 |
+
self.end_interview = self.end_interview_full
|
| 26 |
+
|
| 27 |
+
def text_processor(self):
|
| 28 |
+
def ans_full(response):
|
| 29 |
+
return response
|
| 30 |
+
|
| 31 |
+
def ans_stream(response):
|
| 32 |
+
yield from response
|
| 33 |
+
|
| 34 |
+
if self.streaming:
|
| 35 |
+
return ans_full
|
| 36 |
+
else:
|
| 37 |
+
return ans_stream
|
| 38 |
+
|
| 39 |
+
def get_text(self, messages):
|
| 40 |
+
try:
|
| 41 |
+
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1)
|
| 42 |
+
if not response.choices:
|
| 43 |
+
raise APIError("LLM Get Text Error", details="No choices in response")
|
| 44 |
+
return response.choices[0].message.content.strip()
|
| 45 |
+
except Exception as e:
|
| 46 |
+
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
|
| 47 |
+
|
| 48 |
+
def get_text_stream(self, messages):
|
| 49 |
try:
|
| 50 |
response = self.client.chat.completions.create(
|
| 51 |
model=self.config.llm.name,
|
| 52 |
+
messages=messages,
|
| 53 |
+
temperature=1,
|
| 54 |
+
stream=True,
|
|
|
|
|
|
|
| 55 |
)
|
|
|
|
|
|
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
+
raise APIError(f"LLM End Interview Error: Unexpected error: {e}")
|
| 58 |
+
text = ""
|
| 59 |
+
for chunk in response:
|
| 60 |
+
if chunk.choices[0].delta.content:
|
| 61 |
+
text += chunk.choices[0].delta.content
|
| 62 |
+
yield text
|
| 63 |
+
|
| 64 |
+
test_messages = [
|
| 65 |
+
{"role": "system", "content": "You just help me test the connection."},
|
| 66 |
+
{"role": "user", "content": "Hi!"},
|
| 67 |
+
{"role": "user", "content": "Ping!"},
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
def test_llm(self):
|
| 71 |
+
try:
|
| 72 |
+
self.get_text(self.test_messages)
|
| 73 |
+
return True
|
| 74 |
+
except:
|
| 75 |
+
return False
|
| 76 |
+
|
| 77 |
+
def test_llm_stream(self):
|
| 78 |
+
try:
|
| 79 |
+
for _ in self.get_text_stream(self.test_messages):
|
| 80 |
+
pass
|
| 81 |
+
return True
|
| 82 |
+
except:
|
| 83 |
+
return False
|
| 84 |
|
| 85 |
def init_bot(self, problem=""):
|
| 86 |
system_prompt = self.prompts["coding_interviewer_prompt"]
|
|
|
|
| 103 |
if self.is_demo:
|
| 104 |
full_prompt += f" Keep your response very short and simple, no more than {self.demo_word_limit} words."
|
| 105 |
|
| 106 |
+
question = self.get_text(
|
| 107 |
+
[
|
| 108 |
+
{"role": "system", "content": self.prompts["problem_generation_prompt"]},
|
| 109 |
+
{"role": "user", "content": full_prompt},
|
| 110 |
+
]
|
| 111 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
chat_history = self.init_bot(question)
|
| 114 |
return question, chat_history
|
|
|
|
| 118 |
chat_history.append({"role": "user", "content": f"My latest code:\n{code}"})
|
| 119 |
chat_history.append({"role": "user", "content": message})
|
| 120 |
|
| 121 |
+
reply = self.get_text(chat_history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
chat_history.append({"role": "assistant", "content": reply})
|
| 123 |
|
| 124 |
if chat_display:
|
|
|
|
| 128 |
|
| 129 |
return chat_history, chat_display, "", code
|
| 130 |
|
| 131 |
+
# TODO: implement both streaming and non-streaming versions
|
| 132 |
+
def end_interview_prepare_messages(self, problem_description, chat_history):
|
|
|
|
|
|
|
|
|
|
| 133 |
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
|
| 134 |
|
| 135 |
system_prompt = self.prompts["grading_feedback_prompt"]
|
|
|
|
| 143 |
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
|
| 144 |
]
|
| 145 |
|
| 146 |
+
return messages
|
| 147 |
+
|
| 148 |
+
def end_interview_full(self, problem_description, chat_history):
|
| 149 |
+
if len(chat_history) <= 2:
|
| 150 |
+
return "No interview history available"
|
| 151 |
+
else:
|
| 152 |
+
messages = self.end_interview_prepare_messages(problem_description, chat_history)
|
| 153 |
+
return self.get_text_stream(messages)
|
| 154 |
+
|
| 155 |
+
def end_interview_stream(self, problem_description, chat_history):
|
| 156 |
+
if len(chat_history) <= 2:
|
| 157 |
+
yield "No interview history available"
|
| 158 |
+
else:
|
| 159 |
+
messages = self.end_interview_prepare_messages(problem_description, chat_history)
|
| 160 |
+
yield from self.get_text_stream(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -78,11 +78,8 @@ with gr.Blocks(title="AI Interviewer") as demo:
|
|
| 78 |
except:
|
| 79 |
gr.Markdown(f"STT status: π΄{space} {config.stt.name}")
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
gr.Markdown(f"LLM status: π’{space} {config.llm.name}")
|
| 84 |
-
except:
|
| 85 |
-
gr.Markdown(f"LLM status: π΄{space} {config.llm.name}")
|
| 86 |
|
| 87 |
gr.Markdown(instruction["quick_start"])
|
| 88 |
with gr.Row():
|
|
|
|
| 78 |
except:
|
| 79 |
gr.Markdown(f"STT status: π΄{space} {config.stt.name}")
|
| 80 |
|
| 81 |
+
llm_status = get_status_color(llm)
|
| 82 |
+
gr.Markdown(f"LLM status: {llm_status}{space}{config.llm.name}")
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
gr.Markdown(instruction["quick_start"])
|
| 85 |
with gr.Row():
|