Update tasks/audio.py
Browse files- tasks/audio.py +140 -223
tasks/audio.py
CHANGED
|
@@ -16,276 +16,193 @@ router = APIRouter()
|
|
| 16 |
DESCRIPTION = "Random Baseline"
|
| 17 |
ROUTE = "/audio"
|
| 18 |
|
| 19 |
-
|
| 20 |
-
from sklearn.metrics import accuracy_score
|
| 21 |
-
|
| 22 |
@router.post(ROUTE, tags=["Audio Task"],
|
| 23 |
description=DESCRIPTION)
|
| 24 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
| 25 |
-
|
| 26 |
-
# Map string predictions to numeric labels
|
| 27 |
-
numeric_predictions = map_predictions_to_labels(predictions)
|
| 28 |
-
|
| 29 |
-
# Extract true labels (already numeric)
|
| 30 |
-
true_labels = test_dataset["label"]
|
| 31 |
-
|
| 32 |
-
# Calculate accuracy
|
| 33 |
-
accuracy = accuracy_score(true_labels, numeric_predictions)
|
| 34 |
-
print("Accuracy:", accuracy)
|
| 35 |
-
|
| 36 |
-
# Get space info
|
| 37 |
-
username, space_url = get_space_info()
|
| 38 |
-
|
| 39 |
-
# Define the label mapping
|
| 40 |
-
LABEL_MAPPING = {
|
| 41 |
-
"chainsaw": 0,
|
| 42 |
-
"environment": 1
|
| 43 |
-
}
|
| 44 |
# Load and prepare the dataset
|
| 45 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 46 |
-
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
| 47 |
-
|
| 48 |
# Split dataset
|
| 49 |
train_test = dataset["train"]
|
| 50 |
test_dataset = dataset["test"]
|
| 51 |
-
|
| 52 |
# Start tracking emissions
|
| 53 |
tracker.start()
|
| 54 |
tracker.start_task("inference")
|
| 55 |
-
|
| 56 |
#--------------------------------------------------------------------------------------------
|
| 57 |
# YOUR MODEL INFERENCE CODE HERE
|
| 58 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 59 |
#--------------------------------------------------------------------------------------------
|
| 60 |
-
import tensorflow as tf
|
| 61 |
-
import tensorflow_hub as hub
|
| 62 |
-
import librosa
|
| 63 |
-
import numpy as np
|
| 64 |
-
import
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def load_class_names(csv_file_path):
|
| 76 |
-
class_names = []
|
| 77 |
-
with open(csv_file_path, "r") as file:
|
| 78 |
-
next(file) # Skip the header
|
| 79 |
-
for line in file:
|
| 80 |
-
class_names.append(line.strip().split(",")[-1]) # Get the class name from the last column
|
| 81 |
-
return class_names
|
| 82 |
-
|
| 83 |
-
yamnet_classes = load_class_names(labels)
|
| 84 |
-
|
| 85 |
-
# Define a function for YAMNet inference
|
| 86 |
-
def yamnet_inference(file_name):
|
| 87 |
-
try:
|
| 88 |
-
# Load the audio file and resample to 16kHz (YAMNet's expected sample rate)
|
| 89 |
-
waveform, sample_rate = librosa.load(file_name, sr=16000)
|
| 90 |
-
|
| 91 |
-
# Normalize audio data
|
| 92 |
-
waveform = waveform / np.max(np.abs(waveform))
|
| 93 |
-
|
| 94 |
-
# Convert to tensor
|
| 95 |
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# Average the scores across time frames to get a single prediction for the entire audio
|
| 101 |
-
prediction = tf.reduce_mean(scores, axis=0).numpy()
|
| 102 |
-
|
| 103 |
-
return prediction
|
| 104 |
-
except Exception as e:
|
| 105 |
-
print(f"Error processing file {file_name}: {e}")
|
| 106 |
-
return None
|
| 107 |
-
|
| 108 |
-
# Function to map predictions to class names
|
| 109 |
-
def get_top_class(predictions):
|
| 110 |
-
if predictions is None:
|
| 111 |
-
return "Error"
|
| 112 |
-
top_class = np.argmax(predictions) # Get the index of the class with the highest score
|
| 113 |
-
return yamnet_classes[top_class] if top_class < len(yamnet_classes) else "Unknown"
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
import numpy as np
|
| 118 |
-
from sklearn.model_selection import train_test_split
|
| 119 |
-
from tensorflow.keras.utils import to_categorical
|
| 120 |
-
from datasets import DatasetDict
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
yamnet_model = hub.load(yamnet_model_url)
|
| 125 |
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
|
| 132 |
|
| 133 |
-
#
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
|
|
|
|
| 140 |
|
| 141 |
-
|
| 142 |
-
test_embeddings = dataset["test"].map(extract_embedding)
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
-
for example in test_embeddings:
|
| 155 |
-
for embedding in example["embedding"]:
|
| 156 |
-
X_test.append(embedding)
|
| 157 |
-
y_test.append(example["label"])
|
| 158 |
|
| 159 |
-
#
|
| 160 |
-
|
| 161 |
-
y_train = np.array(y_train)
|
| 162 |
-
X_test = np.array(X_test)
|
| 163 |
-
y_test = np.array(y_test)
|
| 164 |
|
| 165 |
-
#
|
| 166 |
-
y_train_cat =
|
| 167 |
-
y_test_cat = to_categorical(y_test, num_classes=2)
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
from
|
| 172 |
-
|
|
|
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
Dropout(0.3),
|
| 178 |
-
Dense(64, activation='relu'),
|
| 179 |
-
Dropout(0.3),
|
| 180 |
-
Dense(2, activation='softmax') # 2 classes: chainsaw (0) vs. environment (1)
|
| 181 |
-
])
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
# Train the model on YAMNet embeddings
|
| 189 |
-
model.fit(X_train, y_train_cat, epochs=20, batch_size=16, validation_data=(X_test, y_test_cat))
|
| 190 |
-
|
| 191 |
-
# Evaluate the model
|
| 192 |
-
y_pred = model.predict(X_test)
|
| 193 |
-
y_pred_labels = np.argmax(y_pred, axis=1)
|
| 194 |
-
|
| 195 |
-
from sklearn.metrics import accuracy_score
|
| 196 |
-
accuracy = accuracy_score(y_test, y_pred_labels)
|
| 197 |
-
print("Transfer Learning Model Accuracy:", accuracy)
|
| 198 |
|
| 199 |
-
#
|
| 200 |
-
|
| 201 |
-
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
waveform = audio_data["array"]
|
| 206 |
-
sample_rate = audio_data["sampling_rate"]
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
|
|
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
|
|
|
| 231 |
|
| 232 |
-
|
| 233 |
-
predicted_class_index = np.argmax(scores)
|
| 234 |
-
predicted_class_label = predicted_class_index # Assuming 0 for 'chainsaw', 1 for 'environment'
|
| 235 |
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
|
|
|
| 241 |
|
| 242 |
-
|
| 243 |
-
""
|
| 244 |
-
Maps string predictions to numeric labels:
|
| 245 |
-
- "chainsaw" -> 0
|
| 246 |
-
- any other class -> 1
|
| 247 |
-
Args:
|
| 248 |
-
predictions (list of str): List of class name predictions.
|
| 249 |
-
Returns:
|
| 250 |
-
list of int: Mapped numeric labels.
|
| 251 |
-
"""
|
| 252 |
-
return [0 if pred == "chainsaw" else 1 for pred in predictions]
|
| 253 |
|
| 254 |
-
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
emissions_data
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
"accuracy": float(accuracy),
|
| 280 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 281 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 282 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
| 283 |
-
"api_route": ROUTE,
|
| 284 |
-
"dataset_config": {
|
| 285 |
-
"dataset_name": request.dataset_name,
|
| 286 |
-
"test_size": request.test_size,
|
| 287 |
-
"test_seed": request.test_seed
|
| 288 |
}
|
| 289 |
-
}
|
| 290 |
|
| 291 |
-
print(results)
|
|
|
|
| 16 |
DESCRIPTION = "Random Baseline"
|
| 17 |
ROUTE = "/audio"
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
@router.post(ROUTE, tags=["Audio Task"],
|
| 20 |
description=DESCRIPTION)
|
| 21 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Load and prepare the dataset
|
| 23 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 24 |
+
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
| 25 |
+
|
| 26 |
# Split dataset
|
| 27 |
train_test = dataset["train"]
|
| 28 |
test_dataset = dataset["test"]
|
| 29 |
+
|
| 30 |
# Start tracking emissions
|
| 31 |
tracker.start()
|
| 32 |
tracker.start_task("inference")
|
| 33 |
+
|
| 34 |
#--------------------------------------------------------------------------------------------
|
| 35 |
# YOUR MODEL INFERENCE CODE HERE
|
| 36 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 37 |
#--------------------------------------------------------------------------------------------
|
| 38 |
+
import tensorflow as tf
|
| 39 |
+
import tensorflow_hub as hub
|
| 40 |
+
import librosa
|
| 41 |
+
import numpy as np
|
| 42 |
+
from sklearn.model_selection import train_test_split
|
| 43 |
+
from tensorflow.keras.utils import to_categorical
|
| 44 |
+
|
| 45 |
+
# Load YAMNet Model
|
| 46 |
+
yamnet_model_url = "https://tfhub.dev/google/yamnet/1"
|
| 47 |
+
yamnet_model = hub.load(yamnet_model_url)
|
| 48 |
+
|
| 49 |
+
# Function to extract embeddings from audio
|
| 50 |
+
def extract_embedding(audio_example):
|
| 51 |
+
'''Extract YAMNet embeddings from a waveform'''
|
| 52 |
+
waveform = audio_example["audio"]["array"] # Ensure correct key reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
|
| 54 |
+
scores, embeddings, spectrogram = yamnet_model(waveform)
|
| 55 |
+
return {"embedding": embeddings.numpy()}
|
| 56 |
|
| 57 |
+
# Apply embedding extraction to training data
|
| 58 |
+
train_embeddings = dataset["train"].map(extract_embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# Apply embedding extraction to testing data
|
| 61 |
+
test_embeddings = dataset["test"].map(extract_embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
X_train, y_train = [], []
|
| 64 |
+
X_test, y_test = [], []
|
|
|
|
| 65 |
|
| 66 |
+
# Process Training Data
|
| 67 |
+
for example in train_embeddings:
|
| 68 |
+
for embedding in example["embedding"]:
|
| 69 |
+
X_train.append(embedding)
|
| 70 |
+
y_train.append(example["label"])
|
|
|
|
| 71 |
|
| 72 |
+
# Process Testing Data
|
| 73 |
+
for example in test_embeddings:
|
| 74 |
+
for embedding in example["embedding"]:
|
| 75 |
+
X_test.append(embedding)
|
| 76 |
+
y_test.append(example["label"])
|
| 77 |
|
| 78 |
+
# Convert to NumPy arrays
|
| 79 |
+
X_train = np.array(X_train)
|
| 80 |
+
y_train = np.array(y_train)
|
| 81 |
+
X_test = np.array(X_test)
|
| 82 |
+
y_test = np.array(y_test)
|
| 83 |
|
| 84 |
+
# Convert labels to categorical (one-hot encoding)
|
| 85 |
+
y_train_cat = to_categorical(y_train, num_classes=2)
|
| 86 |
+
y_test_cat = to_categorical(y_test, num_classes=2)
|
| 87 |
|
| 88 |
+
print(f"Training samples: {X_train.shape}, Test samples: {X_test.shape}")
|
|
|
|
| 89 |
|
| 90 |
+
from tensorflow.keras.models import Sequential
|
| 91 |
+
from tensorflow.keras.layers import Dense, Dropout
|
| 92 |
|
| 93 |
+
# Define the model
|
| 94 |
+
model = Sequential([
|
| 95 |
+
Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
|
| 96 |
+
Dropout(0.3),
|
| 97 |
+
Dense(64, activation='relu'),
|
| 98 |
+
Dropout(0.3),
|
| 99 |
+
Dense(2, activation='softmax') # 2 classes: chainsaw (0) vs. environment (1)
|
| 100 |
+
])
|
| 101 |
|
| 102 |
+
model.summary()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# Compile the model
|
| 105 |
+
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
# Train the model on YAMNet embeddings
|
| 108 |
+
model.fit(X_train, y_train_cat, epochs=20, batch_size=16, validation_data=(X_test, y_test_cat))
|
|
|
|
| 109 |
|
| 110 |
+
# Evaluate the model
|
| 111 |
+
y_pred = model.predict(X_test)
|
| 112 |
+
y_pred_labels = np.argmax(y_pred, axis=1)
|
| 113 |
|
| 114 |
+
from sklearn.metrics import accuracy_score
|
| 115 |
+
accuracy = accuracy_score(y_test, y_pred_labels)
|
| 116 |
+
print("Transfer Learning Model Accuracy:", accuracy)
|
| 117 |
|
| 118 |
+
# Predict labels for the test dataset
|
| 119 |
+
# Run YAMNet inference on the raw audio data
|
| 120 |
+
predictions = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
for audio_data in test_dataset["audio"]:
|
| 123 |
+
# Extract waveform and sampling rate
|
| 124 |
+
waveform = audio_data["array"]
|
| 125 |
+
sample_rate = audio_data["sampling_rate"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
# Resample the waveform to 16kHz (YAMNet's expected sample rate) if necessary
|
| 128 |
+
if sample_rate != 16000:
|
| 129 |
+
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
| 130 |
|
| 131 |
+
# Convert waveform to tensor
|
| 132 |
+
waveform = tf.convert_to_tensor(waveform, dtype=tf.float32)
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
# Ensure waveform is 1D
|
| 135 |
+
waveform = tf.squeeze(waveform)
|
|
|
|
| 136 |
|
| 137 |
+
# Predict with YAMNet--->model
|
| 138 |
+
# Get YAMNet embeddings
|
| 139 |
+
_, embeddings, _ = yamnet_model(waveform) # Using the original yamnet_model for embedding extraction
|
| 140 |
|
| 141 |
+
# Calculate the mean of the embeddings across the time dimension
|
| 142 |
+
embeddings = tf.reduce_mean(embeddings, axis=0) # Average across time frames
|
| 143 |
|
| 144 |
+
# Reshape embeddings for prediction
|
| 145 |
+
embeddings = embeddings.numpy() # Convert to NumPy array
|
| 146 |
+
embeddings = embeddings.reshape(1, -1) # Reshape to (1, embedding_dimension)
|
| 147 |
|
| 148 |
+
# Now predict using your trained model
|
| 149 |
+
scores = model.predict(embeddings)
|
| 150 |
|
| 151 |
+
# Get predicted class
|
| 152 |
+
predicted_class_index = np.argmax(scores)
|
| 153 |
+
predicted_class_label = predicted_class_index # Assuming 0 for 'chainsaw', 1 for 'environment'
|
| 154 |
|
| 155 |
+
# Get the top class name using the predicted label
|
| 156 |
+
top_class = "chainsaw" if predicted_class_label == 0 else "environment"
|
| 157 |
+
predictions.append(top_class)
|
| 158 |
|
| 159 |
+
print("Predictions:", predictions)
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
def map_predictions_to_labels(predictions):
|
| 162 |
+
"""
|
| 163 |
+
Maps string predictions to numeric labels:
|
| 164 |
+
- "chainsaw" -> 0
|
| 165 |
+
- any other class -> 1
|
| 166 |
+
Args:
|
| 167 |
+
predictions (list of str): List of class name predictions.
|
| 168 |
+
Returns:
|
| 169 |
+
list of int: Mapped numeric labels.
|
| 170 |
+
"""
|
| 171 |
+
return [0 if pred == "chainsaw" else 1 for pred in predictions]
|
| 172 |
|
| 173 |
+
# Map string predictions to numeric labels
|
| 174 |
+
numeric_predictions = map_predictions_to_labels(predictions)
|
| 175 |
|
| 176 |
+
# Extract true labels (already numeric)
|
| 177 |
+
true_labels = test_dataset["label"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
# Calculate accuracy
|
| 180 |
+
accuracy = accuracy_score(true_labels, numeric_predictions)
|
| 181 |
+
print("Accuracy:", accuracy)
|
| 182 |
|
| 183 |
+
#--------------------------------------------------------------------------------------------
|
| 184 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
| 185 |
+
#--------------------------------------------------------------------------------------------
|
| 186 |
+
|
| 187 |
+
# Stop tracking emissions
|
| 188 |
+
emissions_data = tracker.stop_task()
|
| 189 |
+
|
| 190 |
+
# Prepare results dictionary
|
| 191 |
+
results = {
|
| 192 |
+
"username": username,
|
| 193 |
+
"space_url": space_url,
|
| 194 |
+
"submission_timestamp": datetime.now().isoformat(),
|
| 195 |
+
"model_description": DESCRIPTION,
|
| 196 |
+
"accuracy": float(accuracy),
|
| 197 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 198 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 199 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
| 200 |
+
"api_route": ROUTE,
|
| 201 |
+
"dataset_config": {
|
| 202 |
+
"dataset_name": request.dataset_name,
|
| 203 |
+
"test_size": request.test_size,
|
| 204 |
+
"test_seed": request.test_seed
|
| 205 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
}
|
|
|
|
| 207 |
|
| 208 |
+
print(results)
|