Spaces:
Sleeping
Sleeping
File size: 21,960 Bytes
266d7bc dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 266d7bc eea93d3 266d7bc dc59d80 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 dc59d80 eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc eea93d3 266d7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
import os
import gradio as gr
import markdown
import requests
import yaml
from dotenv import load_dotenv
try:
from src.api.models.provider_models import MODEL_REGISTRY
except ImportError as e:
raise ImportError(
"Could not import MODEL_REGISTRY from src.api.models.provider_models. "
"Check the path and file existence."
) from e
# Initialize environment variables
load_dotenv()
BACKEND_URL = os.getenv("BACKEND_URL", "http://localhost:8080")
API_BASE_URL = f"{BACKEND_URL}/search"
# Load feeds from YAML
def load_feeds():
"""Load feeds from the YAML configuration file.
Returns:
list: List of feeds with their details.
"""
feeds_path = os.path.join(os.path.dirname(__file__), "../src/configs/feeds_rss.yaml")
with open(feeds_path) as f:
feeds_yaml = yaml.safe_load(f)
return feeds_yaml.get("feeds", [])
feeds = load_feeds()
feed_names = [f["name"] for f in feeds]
feed_authors = [f["author"] for f in feeds]
# -----------------------
# Custom CSS for modern UI
# -----------------------
CUSTOM_CSS = """
/* Minimal, utility-first vibe with a neutral palette */
:root {
--border: 1px solid rgba(2, 6, 23, 0.08);
--surface: #ffffff;
--surface-muted: #f8fafc;
--text: #0f172a;
--muted: #475569;
--accent: #0ea5e9;
--accent-strong: #0284c7;
--radius: 12px;
--shadow: 0 8px 20px rgba(2, 6, 23, 0.06);
}
.gradio-container, body {
background: var(--surface-muted);
color: var(--text);
}
.dark .gradio-container, .dark body {
background: #0b1220;
color: #e5e7eb;
}
.section {
background: var(--surface);
border: var(--border);
border-radius: var(--radius);
box-shadow: var(--shadow);
padding: 16px;
}
.dark .section {
background: #0f172a;
border: 1px solid rgba(255,255,255,0.08);
}
.header {
display: flex;
align-items: baseline;
justify-content: space-between;
margin-bottom: 12px;
}
.header h2 {
margin: 0;
font-size: 22px;
}
.subtle {
color: var(--muted);
font-size: 13px;
}
.results-table {
width: 100%;
border-collapse: collapse;
font-size: 14px;
}
.results-table th, .results-table td {
border: 1px solid #e2e8f0;
padding: 10px;
text-align: left;
vertical-align: top;
}
.results-table th {
background: #f1f5f9;
}
.dark .results-table th {
background: #0b1325;
border-color: rgba(255,255,255,0.08);
color: #e5e7eb;
}
.dark .results-table td {
border-color: rgba(255,255,255,0.08);
color: #e2e8f0;
}
.results-table a {
color: var(--accent-strong);
text-decoration: none;
font-weight: 600;
}
.results-table a:hover {
text-decoration: underline;
}
.dark .results-table a {
color: #7dd3fc;
}
.answer {
background: var(--surface);
border: var(--border);
border-radius: var(--radius);
padding: 14px;
}
.dark .answer {
background: #0f172a;
border: 1px solid rgba(255,255,255,0.08);
color: #e5e7eb;
}
.model-badge {
display: inline-block;
margin-top: 6px;
padding: 6px 10px;
border-radius: 999px;
border: var(--border);
background: #eef2ff;
color: #3730a3;
font-weight: 600;
}
.dark .model-badge {
background: rgba(59,130,246,0.15);
color: #c7d2fe;
border: 1px solid rgba(255,255,255,0.08);
}
.error {
border: 1px solid #fecaca;
background: #fff1f2;
color: #7f1d1d;
border-radius: var(--radius);
padding: 10px 12px;
}
.dark .error {
border: 1px solid rgba(248,113,113,0.35);
background: rgba(127,29,29,0.25);
color: #fecaca;
}
/* Sticky status banner with spinner */
#status-banner {
position: sticky;
top: 0;
z-index: 1000;
margin: 8px 0 12px 0;
}
#status-banner .banner {
display: flex;
align-items: center;
gap: 10px;
padding: 10px 12px;
border-radius: var(--radius);
border: 1px solid #bae6fd;
background: #e0f2fe;
color: #075985;
box-shadow: var(--shadow);
}
#status-banner .spinner {
width: 16px;
height: 16px;
border-radius: 999px;
border: 2px solid currentColor;
border-right-color: transparent;
animation: spin 0.8s linear infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
.dark #status-banner .banner {
border-color: rgba(59,130,246,0.35);
background: rgba(2,6,23,0.55);
color: #93c5fd;
}
/* Actions row aligns buttons to the right, outside filter sections */
.actions {
display: flex;
justify-content: flex-end;
margin: 8px 0 12px 0;
gap: 8px;
}
/* Prominent CTA buttons (not full-width) */
.cta {
display: inline-flex;
}
.cta .gr-button {
background: linear-gradient(180deg, var(--accent), var(--accent-strong));
color: #ffffff;
border: none;
border-radius: 14px;
padding: 12px 18px;
font-weight: 700;
font-size: 15px;
box-shadow: 0 10px 22px rgba(2,6,23,0.18);
width: auto !important;
}
.cta .gr-button:hover {
transform: translateY(-1px);
filter: brightness(1.05);
}
.cta .gr-button:focus-visible {
outline: 2px solid #93c5fd;
outline-offset: 2px;
}
.dark .cta .gr-button {
box-shadow: 0 12px 26px rgba(2,6,23,0.45);
}
"""
# -----------------------
# API helpers
# -----------------------
def fetch_unique_titles(payload):
"""
Fetch unique article titles based on the search criteria.
Args:
payload (dict): The search criteria including query_text, feed_author,
feed_name, limit, and optional title_keywords.
Returns:
list: A list of articles matching the criteria.
Raises:
Exception: If the API request fails.
"""
try:
resp = requests.post(f"{API_BASE_URL}/unique-titles", json=payload)
resp.raise_for_status()
return resp.json().get("results", [])
except Exception as e:
raise Exception(f"Failed to fetch titles: {str(e)}") from e
def call_ai(payload, streaming=True):
""" "
Call the AI endpoint with the given payload.
Args:
payload (dict): The payload to send to the AI endpoint.
streaming (bool): Whether to use streaming or non-streaming endpoint.
Yields:
tuple: A tuple containing the type of response and the response text.
"""
endpoint = f"{API_BASE_URL}/ask/stream" if streaming else f"{API_BASE_URL}/ask"
answer_text = ""
try:
if streaming:
with requests.post(endpoint, json=payload, stream=True) as r:
r.raise_for_status()
for chunk in r.iter_content(chunk_size=None, decode_unicode=True):
if not chunk:
continue
if chunk.startswith("__model_used__:"):
yield "model", chunk.replace("__model_used__:", "").strip()
elif chunk.startswith("__error__"):
yield "error", "Request failed. Please try again later."
break
elif chunk.startswith("__truncated__"):
yield "truncated", "AI response truncated due to token limit."
else:
answer_text += chunk
yield "text", answer_text
else:
resp = requests.post(endpoint, json=payload)
resp.raise_for_status()
data = resp.json()
answer_text = data.get("answer", "")
yield "text", answer_text
if data.get("finish_reason") == "length":
yield "truncated", "AI response truncated due to token limit."
except Exception as e:
yield "error", f"Request failed: {str(e)}"
def get_models_for_provider(provider):
"""
Get available models for a provider
Args:
provider (str): The name of the provider (e.g., "openrouter", "openai")
Returns:
list: List of model names available for the provider
"""
provider_key = provider.lower()
try:
config = MODEL_REGISTRY.get_config(provider_key)
return (
["Automatic Model Selection (Model Routing)"]
+ ([config.primary_model] if config.primary_model else [])
+ list(config.candidate_models)
)
except Exception:
return ["Automatic Model Selection (Model Routing)"]
# -----------------------
# Gradio interface functions
# -----------------------
def handle_search_articles(query_text, feed_name, feed_author, title_keywords, limit):
"""
Handle article search
Args:
query_text (str): The text to search for in article titles.
feed_name (str): The name of the feed to filter articles by.
feed_author (str): The author of the feed to filter articles by.
title_keywords (str): Keywords to search for in article titles.
limit (int): The maximum number of articles to return.
Returns:
str: HTML formatted string of search results or error message.
Raises:
Exception: If the API request fails.
"""
if not query_text.strip():
return "Please enter a query text."
payload = {
"query_text": query_text.strip().lower(),
"feed_author": feed_author.strip() if feed_author else "",
"feed_name": feed_name.strip() if feed_name else "",
"limit": limit,
"title_keywords": title_keywords.strip().lower() if title_keywords else None,
}
try:
results = fetch_unique_titles(payload)
if not results:
return "No results found."
# Render results as a compact table
html_output = (
"<div class='section'>"
" <div class='header'><h2>Results</h2><span class='subtle'>Unique titles</span></div>"
" <table class='results-table'>"
" <thead>"
" <tr><th>Title</th><th>Newsletter</th><th>Feed Author</th><th>Article Authors</th><th>Link</th></tr>"
" </thead>"
" <tbody>"
)
for item in results:
title = item.get("title", "No title")
feed_n = item.get("feed_name", "N/A")
feed_a = item.get("feed_author", "N/A")
authors = ", ".join(item.get("article_author") or ["N/A"])
url = item.get("url", "#")
html_output += (
" <tr>"
f" <td>{title}</td>"
f" <td>{feed_n}</td>"
f" <td>{feed_a}</td>"
f" <td>{authors}</td>"
f" <td><a href='{url}' target='_blank' rel='noopener noreferrer'>Open</a></td>"
" </tr>"
)
html_output += " </tbody></table></div>"
return html_output
except Exception as e:
return f"<div style='color:red; padding:10px;'>Error: {str(e)}</div>"
def handle_ai_question_streaming(
query_text,
feed_name,
feed_author,
limit,
provider,
model,
):
"""
Handle AI question with streaming
Args:
query_text (str): The question to ask the AI.
feed_name (str): The name of the feed to filter articles by.
feed_author (str): The author of the feed to filter articles by.
limit (int): The maximum number of articles to consider.
provider (str): The LLM provider to use.
model (str): The specific model to use from the provider.
Yields:
tuple: (HTML formatted answer string, model info string)
"""
if not query_text.strip():
yield "Please enter a query text.", ""
return
if not provider or not model:
yield "Please select provider and model.", ""
return
payload = {
"query_text": query_text.strip().lower(),
"feed_author": feed_author.strip() if feed_author else "",
"feed_name": feed_name.strip() if feed_name else "",
"limit": limit,
"provider": provider.lower(),
}
if model != "Automatic Model Selection (Model Routing)":
payload["model"] = model
try:
answer_html = ""
model_info = f"<span class='model-badge'>Provider: {provider}</span>"
for _, (event_type, content) in enumerate(call_ai(payload, streaming=True)):
if event_type == "text":
html_content = markdown.markdown(content, extensions=["tables"])
answer_html = f"<div class='answer'><div class='markdown-body'>{html_content}</div></div>"
yield answer_html, model_info
elif event_type == "model":
model_info = f"<span class='model-badge'>Provider: {provider} | Model: {content}</span>"
yield answer_html, model_info
elif event_type == "truncated":
answer_html += f"<div class='answer'><div style='color:#b45309; font-weight:700;'>⚠️ {content}</div></div>"
yield answer_html, model_info
elif event_type == "error":
error_html = f"<div class='error'><div>❌ {content}</div></div>"
yield error_html, model_info
break
except Exception as e:
error_html = "<div class='error'>Error: {}</div>".format(str(e))
yield error_html, model_info
def handle_ai_question_non_streaming(query_text, feed_name, feed_author, limit, provider, model):
"""
Handle AI question without streaming
Args:
query_text (str): The question to ask the AI.
feed_name (str): The name of the feed to filter articles by.
feed_author (str): The author of the feed to filter articles by.
limit (int): The maximum number of articles to consider.
provider (str): The LLM provider to use.
model (str): The specific model to use from the provider.
Returns:
tuple: (HTML formatted answer string, model info string)
"""
if not query_text.strip():
return "Please enter a query text.", ""
if not provider or not model:
return "Please select provider and model.", ""
payload = {
"query_text": query_text.strip().lower(),
"feed_author": feed_author.strip() if feed_author else "",
"feed_name": feed_name.strip() if feed_name else "",
"limit": limit,
"provider": provider.lower(),
}
if model != "Automatic Model Selection (Model Routing)":
payload["model"] = model
try:
answer_html = ""
model_info = f"<span class='model-badge'>Provider: {provider}</span>"
for event_type, content in call_ai(payload, streaming=False):
if event_type == "text":
html_content = markdown.markdown(content, extensions=["tables"])
answer_html = f"<div class='answer'><div class='markdown-body'>{html_content}</div></div>"
elif event_type == "model":
model_info = f"<span class='model-badge'>Provider: {provider} | Model: {content}</span>"
elif event_type == "truncated":
answer_html += f"<div class='answer'><div style='color:#b45309; font-weight:700;'>⚠️ {content}</div></div>"
elif event_type == "error":
return (
f"<div class='error'>❌ {content}</div>",
model_info,
)
return answer_html, model_info
except Exception as e:
return (
f"<div class='error'>Error: {str(e)}</div>",
f"<span class='model-badge'>Provider: {provider}</span>",
)
def update_model_choices(provider):
"""
Update model choices based on selected provider
Args:
provider (str): The selected LLM provider
Returns:
gr.Dropdown: Updated model dropdown component
"""
models = get_models_for_provider(provider)
return gr.Dropdown(choices=models, value=models[0] if models else "")
# -----------------------
# Progress/status helpers
# -----------------------
def start_search_status():
return "<div class='banner'><span class='spinner'></span><strong>Searching articles...</strong></div>"
def start_ai_status(streaming_mode):
mode = "streaming" if streaming_mode == "Streaming" else "non‑streaming"
return f"<div class='banner'><span class='spinner'></span><strong>Generating answer ({mode})...</strong></div>"
def clear_status():
return ""
# -----------------------
# Gradio UI (new layout)
# -----------------------
def ask_ai_router(
streaming_mode,
query_text,
feed_name,
feed_author,
limit,
provider,
model,
):
"""
Route AI question to streaming or non-streaming handler.
Yields:
tuple: (answer_html, model_info_html)
"""
if streaming_mode == "Streaming":
yield from handle_ai_question_streaming(
query_text, feed_name, feed_author, limit, provider, model
)
else:
result_html, model_info_text = handle_ai_question_non_streaming(
query_text, feed_name, feed_author, limit, provider, model
)
yield result_html, model_info_text
with gr.Blocks(title="Article Search Engine", theme=gr.themes.Base(), css=CUSTOM_CSS) as demo:
gr.Markdown(
"### Article Search Engine\n"
"Search across substack, medium and top publications articles on AI topics or ask questions with an AI assistant."
)
# Sticky status banner (empty by default)
status_banner = gr.HTML(value="", elem_id="status-banner")
with gr.Tabs():
# Search Tab
with gr.Tab("Search"):
with gr.Group(elem_classes="section"):
gr.Markdown("#### Find articles on any AI topic")
search_query = gr.Textbox(
label="Query",
placeholder="What are you looking for?",
lines=3,
)
with gr.Row():
search_feed_author = gr.Dropdown(
choices=[""] + feed_authors, label="Author (optional)", value=""
)
search_feed_name = gr.Dropdown(
choices=[""] + feed_names, label="Newsletter (optional)", value=""
)
with gr.Row():
search_title_keywords = gr.Textbox(
label="Title keywords (optional)",
placeholder="Filter by words in the title",
)
search_limit = gr.Slider(
minimum=1, maximum=20, step=1, label="Number of results", value=5
)
with gr.Row(elem_classes="actions"):
search_btn = gr.Button("Search", variant="primary", elem_classes="cta")
search_output = gr.HTML(label="Results")
# Ask AI Tab
with gr.Tab("Ask AI"):
with gr.Group(elem_classes="section"):
gr.Markdown("#### Ask an AI assistant about any AI topic")
ai_query = gr.Textbox(
label="Your question",
placeholder="Ask a question. The AI will use the articles for context.",
lines=4,
)
with gr.Row():
ai_feed_author = gr.Dropdown(
choices=[""] + feed_authors, label="Author (optional)", value=""
)
ai_feed_name = gr.Dropdown(
choices=[""] + feed_names, label="Newsletter (optional)", value=""
)
ai_limit = gr.Slider(
minimum=1, maximum=20, step=1, label="Max articles", value=5
)
with gr.Row():
provider_dd = gr.Dropdown(
choices=["OpenRouter", "HuggingFace", "OpenAI"],
label="LLM Provider",
value="OpenRouter",
)
model_dd = gr.Dropdown(
choices=get_models_for_provider("OpenRouter"),
label="Model",
value="Automatic Model Selection (Model Routing)",
)
streaming_mode_dd = gr.Radio(
choices=["Streaming", "Non-Streaming"],
value="Streaming",
label="Answer mode",
)
with gr.Row(elem_classes="actions"):
ask_btn = gr.Button("Run", variant="primary", elem_classes="cta")
ai_answer = gr.HTML(label="Answer")
ai_model_info = gr.HTML(label="Model")
# Wire events with sticky status banner
search_btn.click(
fn=start_search_status,
inputs=[],
outputs=[status_banner],
show_progress=False,
).then(
fn=handle_search_articles,
inputs=[
search_query,
search_feed_name,
search_feed_author,
search_title_keywords,
search_limit,
],
outputs=[search_output],
show_progress=False,
).then(
fn=clear_status,
inputs=[],
outputs=[status_banner],
show_progress=False,
)
provider_dd.change(fn=update_model_choices, inputs=[provider_dd], outputs=[model_dd])
ask_btn.click(
fn=start_ai_status,
inputs=[streaming_mode_dd],
outputs=[status_banner],
show_progress=False,
).then(
fn=ask_ai_router,
inputs=[
streaming_mode_dd,
ai_query,
ai_feed_name,
ai_feed_author,
ai_limit,
provider_dd,
model_dd,
],
outputs=[ai_answer, ai_model_info],
show_progress=False,
).then(
fn=clear_status,
inputs=[],
outputs=[status_banner],
show_progress=False,
)
# For local testing
if __name__ == "__main__":
demo.launch()
# # For Google Cloud Run deployment
# if __name__ == "__main__":
# demo.launch(
# server_name="0.0.0.0",
# server_port=int(os.environ.get("PORT", 8080))
# )
|