Spaces:
Paused
Paused
| from typing import Optional, List, Tuple | |
| from functools import lru_cache | |
| import cv2 | |
| from facefusion.typing import Frame, Resolution | |
| from facefusion.choices import video_template_sizes | |
| from facefusion.filesystem import is_image, is_video | |
| def get_video_frame(video_path : str, frame_number : int = 0) -> Optional[Frame]: | |
| if is_video(video_path): | |
| video_capture = cv2.VideoCapture(video_path) | |
| if video_capture.isOpened(): | |
| frame_total = video_capture.get(cv2.CAP_PROP_FRAME_COUNT) | |
| video_capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1)) | |
| has_frame, frame = video_capture.read() | |
| video_capture.release() | |
| if has_frame: | |
| return frame | |
| return None | |
| def count_video_frame_total(video_path : str) -> int: | |
| if is_video(video_path): | |
| video_capture = cv2.VideoCapture(video_path) | |
| if video_capture.isOpened(): | |
| video_frame_total = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| video_capture.release() | |
| return video_frame_total | |
| return 0 | |
| def detect_video_fps(video_path : str) -> Optional[float]: | |
| if is_video(video_path): | |
| video_capture = cv2.VideoCapture(video_path) | |
| if video_capture.isOpened(): | |
| video_fps = video_capture.get(cv2.CAP_PROP_FPS) | |
| video_capture.release() | |
| return video_fps | |
| return None | |
| def detect_video_resolution(video_path : str) -> Optional[Tuple[float, float]]: | |
| if is_video(video_path): | |
| video_capture = cv2.VideoCapture(video_path) | |
| if video_capture.isOpened(): | |
| width = video_capture.get(cv2.CAP_PROP_FRAME_WIDTH) | |
| height = video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT) | |
| video_capture.release() | |
| return width, height | |
| return None | |
| def create_video_resolutions(video_path : str) -> Optional[List[str]]: | |
| temp_resolutions = [] | |
| video_resolutions = [] | |
| video_resolution = detect_video_resolution(video_path) | |
| if video_resolution: | |
| width, height = video_resolution | |
| temp_resolutions.append(normalize_resolution(video_resolution)) | |
| for template_size in video_template_sizes: | |
| if width > height: | |
| temp_resolutions.append(normalize_resolution((template_size * width / height, template_size))) | |
| else: | |
| temp_resolutions.append(normalize_resolution((template_size, template_size * height / width))) | |
| temp_resolutions = sorted(set(temp_resolutions)) | |
| for temp in temp_resolutions: | |
| video_resolutions.append(pack_resolution(temp)) | |
| return video_resolutions | |
| return None | |
| def normalize_resolution(resolution : Tuple[float, float]) -> Resolution: | |
| width, height = resolution | |
| if width and height: | |
| normalize_width = round(width / 2) * 2 | |
| normalize_height = round(height / 2) * 2 | |
| return normalize_width, normalize_height | |
| return 0, 0 | |
| def pack_resolution(resolution : Tuple[float, float]) -> str: | |
| width, height = normalize_resolution(resolution) | |
| return str(width) + 'x' + str(height) | |
| def unpack_resolution(resolution : str) -> Resolution: | |
| width, height = map(int, resolution.split('x')) | |
| return width, height | |
| def resize_frame_resolution(frame : Frame, max_width : int, max_height : int) -> Frame: | |
| height, width = frame.shape[:2] | |
| if height > max_height or width > max_width: | |
| scale = min(max_height / height, max_width / width) | |
| new_width = int(width * scale) | |
| new_height = int(height * scale) | |
| return cv2.resize(frame, (new_width, new_height)) | |
| return frame | |
| def normalize_frame_color(frame : Frame) -> Frame: | |
| return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| def read_static_image(image_path : str) -> Optional[Frame]: | |
| return read_image(image_path) | |
| def read_static_images(image_paths : List[str]) -> Optional[List[Frame]]: | |
| frames = [] | |
| if image_paths: | |
| for image_path in image_paths: | |
| frames.append(read_static_image(image_path)) | |
| return frames | |
| def read_image(image_path : str) -> Optional[Frame]: | |
| if is_image(image_path): | |
| return cv2.imread(image_path) | |
| return None | |
| def write_image(image_path : str, frame : Frame) -> bool: | |
| if image_path: | |
| return cv2.imwrite(image_path, frame) | |
| return False | |