Spaces:
Sleeping
Sleeping
| from sentence_transformers import SentenceTransformer | |
| import pinecone | |
| import openai | |
| import streamlit as st | |
| import os | |
| from dotenv import load_dotenv | |
| # Load environment variables from .env file | |
| load_dotenv("/home/oem/Desktop/TRUEINFO LABS/Quotes_chat/.env") | |
| logo_image = "https://i.ibb.co/vHJZL0y/insightly.png" | |
| st.image(logo_image, width=200) | |
| # Access OpenAI and Pinecone API keys from environment variables | |
| OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
| PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") | |
| openai.api_key = OPENAI_API_KEY | |
| model = SentenceTransformer('all-MiniLM-L6-v2') | |
| pinecone.init(api_key = PINECONE_API_KEY, environment='asia-southeast1-gcp-free') | |
| index = pinecone.Index('langchain-chatbot') | |
| def find_match(input): | |
| input_em = model.encode(input).tolist() | |
| result = index.query(input_em, top_k=2, includeMetadata=True) | |
| return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text'] | |
| def query_refiner(conversation, query): | |
| response = openai.Completion.create( | |
| model="text-davinci-003", | |
| prompt=f"Given the following user query and conversation log, formulate a question that would be the most relevant to provide the user with an answer from a knowledge base.\n\nCONVERSATION LOG: \n{conversation}\n\nQuery: {query}\n\nRefined Query:", | |
| temperature=0.7, | |
| max_tokens=256, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0 | |
| ) | |
| return response['choices'][0]['text'] | |
| def get_conversation_string(): | |
| conversation_string = "" | |
| for i in range(len(st.session_state['responses'])-1): | |
| conversation_string += "Human: "+st.session_state['requests'][i] + "\n" | |
| conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n" | |
| return conversation_string |