File size: 26,037 Bytes
7c08dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
'''
Slide Beamer Code Generation
'''
import re
import fitz
import yaml
import json
import bisect
import string
import os, sys, pdb
import subprocess
import multiprocessing as mp
from os import path
from pathlib import Path
from bisect import bisect_right
from camel.models import ModelFactory
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.types import ModelPlatformType
from pathlib import Path
from typing import Sequence, Tuple, Optional
from PIL import Image, ImageDraw, ImageFont
from .wei_utils import get_agent_config
def extract_json_block(text: str, first_only: bool = True):
pattern = r"```json\s*([\s\S]*?)\s*```"
matches = re.findall(pattern, text, flags=re.IGNORECASE)
if first_only:
return matches[0] if matches else text
return matches
def extract_beamer_code(tex_str):
match = re.search(r"(\\documentclass(?:\[[^\]]*\])?\{beamer\}.*?\\end\{document\})", tex_str, re.DOTALL)
return match.group(1) if match else None
def latex_code_gen(prompt_path, tex_dir, beamer_save_path,
model_config_ll, model_config_vl,
beamer_temp_name=None, if_fix=True, if_tree_search=True):
print("\n๐ฆ [1/8] Initializing language model for Beamer code generation...")
model = ModelFactory.create(
model_platform=model_config_ll["model_platform"],
model_type=model_config_ll["model_type"],
model_config_dict=model_config_ll.get("model_config"),
url=model_config_ll.get("url", None),)
agent = ChatAgent(model=model, system_message="",)
print("โ
Model initialized successfully.")
print("\n๐ฆ [2/8] Loading prompt template from:", prompt_path)
with open(prompt_path, 'r', encoding='utf-8') as f_prompt:
templete_prompt = f_prompt.read()
token_usage = {}
print("\n๐ฆ [3/8] Reading all .tex files from:", tex_dir)
tex_list = find_all_tex_files(tex_dir)
print(f"๐ Found {len(tex_list)} tex files.")
tex_content = '/n'.join(tex_list)
root_dir = Path(tex_dir)
all_relative_paths = [str(file.relative_to(root_dir)) for file in root_dir.rglob("*") if file.is_file()]
print(f"๐ Found {len(all_relative_paths)} project files (figures, data, etc.)")
print("\n๐ฆ [4/8] Generating main inference prompt...")
if beamer_temp_name is None:
main_inference_prompt = [
templete_prompt, "This is the latex code for paper:", tex_content,
"The file paths in the project are: \n{}".format(str(all_relative_paths))
]
else:
main_inference_prompt = [
templete_prompt, "This is the latex code for paper:", tex_content,
"The file paths in the project are: \n{}".format(str(all_relative_paths)),
"Use Beamer Theme: {}".format(beamer_temp_name)
]
main_inference_prompt = "\n".join(map(str, main_inference_prompt))
print("๐ค Sending prompt to model for Beamer slide generation...")
user_msg = BaseMessage.make_user_message(role_name="User", content=main_inference_prompt)
response = safe_step(agent, user_msg)
token_usage["slide_gen"] = response.info['usage']
print("โ
Slide LaTeX code generated.")
code = extract_beamer_code(response.msgs[-1].content)
if not isinstance(code, str):
print("โ ๏ธ Failed to extract Beamer code, dumping raw output...")
print(response.msgs[-1].content)
print(f"\n๐ฆ [5/8] Saving generated Beamer file to: {beamer_save_path}")
with open(beamer_save_path, "w", encoding="utf-8") as f:
f.write(code)
print("โ
Beamer code saved.")
print("\n๐ฆ [6/8] Compiling the generated .tex file using tectonic...")
feedback = compile_tex(beamer_save_path)
## fix if error
num_try = 0
token_usage["fix"] = []
while num_try < 10:
if "error" in feedback:
print(f"โ ๏ธ Compilation error detected, attempt {num_try+1} โ fixing...")
error_info = re.findall(r'^(error: .+)', feedback, flags=re.MULTILINE)
agent.reset()
code, fix_usage = correcte_error(code, error_info, agent)
token_usage["fix"].append(fix_usage)
else:
print("โ
No further compilation errors detected.")
break
if not isinstance(code, str):
print("โ Failed to fix code automatically.")
with open(beamer_save_path, "w", encoding="utf-8") as f:
f.write(code)
feedback = compile_tex(beamer_save_path)
num_try += 1
## improve slide layout
print("\n๐ฆ [7/8] Checking for layout warnings and optimizing slide layout...")
config = model_config_vl
if if_tree_search is True:
new_code_save_path, token_usage_improve = improve_layout(code, feedback, beamer_save_path, config)
token_usage["improve"] = token_usage_improve
print(f"โ
Layout improvement complete. Final slides saved at: {new_code_save_path}")
return token_usage, new_code_save_path
else:
final_pdf = beamer_save_path.replace(".tex", ".pdf")
print(f"โ
Compilation finished. Final PDF saved at: {final_pdf}")
return token_usage, final_pdf
select_proposal_prompt_path = "./Paper2Video/src/prompts/select_proposal.txt"
def improve_layout(code, feedback, beamer_save_path, model_config):
with open(select_proposal_prompt_path, 'r') as f: template_prompt = f.read()
token_usage_improve = []
## get layout warning info
warning_info = re.findall(r'^(warning: .+)', feedback, flags=re.MULTILINE)
warning_info = warning_info[:len(warning_info)//2]
warning_info = [s for s in warning_info if 'Overfull' in s]
## find out which slide needed to be improved
head = re.search(r'\\documentclass(?:\[[^\]]*\])?\{beamer\}(.*?)\\begin{document}', code, flags=re.DOTALL).group(1)
head = head + "\n" + "\\setbeamerfont{caption}{size=\\scriptsize}" ## smaller the caption front size
frames = compute_frame_spans(code)
need_improve_list = []
for warning in warning_info:
num = int(re.search(r'(?<=\.tex:)\d+', warning).group())
for idx, f in enumerate(frames):
if f["start_line"]<=num<= f["end_line"]:
if "\\includegraphics" in f["text"]:
need_improve_list.append(idx)
break
need_improve_list = sorted(set(need_improve_list))
## propose
# num_process = 4
# args_list = []
# for idx, frame_idx in enumerate(need_improve_list):
# args_list.append([idx, model_config, template_prompt, head, frames[frame_idx]])
# with mp.Pool(processes=num_process) as pool: results = pool.map(improve_per_slide, args_list)
# for result in results:
# idx, refined_code, usage_improve = result
# frames[frame_idx]["text"] = refined_code
# token_usage_improve.append(usage_improve)
imporve_model = ModelFactory.create(
model_platform=model_config["model_platform"],
model_type=model_config["model_type"],
model_config_dict=model_config.get("model_config"),
url=model_config.get("url", None),)
imporve_agent = ChatAgent(model=imporve_model, system_message="",)
proposal_tmp_dir = path.join(path.dirname(beamer_save_path), 'proposal_imgs')
os.makedirs(proposal_tmp_dir, exist_ok=True)
factors = [1, 0.75, 0.5, 0.25]
map_dic = {"A": 0, "B": 1, "C": 2, "D": 3}
for idx, frame_idx in enumerate(need_improve_list):
frame = frames[frame_idx]
proposal_imgs_path_list = []
proposal_code_list = []
for factor in factors:
proposal_code = scale_includegraphics_widths(frame["text"], factor)
proposal_code = add_small_after_blocks(proposal_code)
proposal_full_code = '\n'.join(["\\documentclass{beamer}", head, "\\begin{document}", proposal_code, "\\end{document}"])
proposal_code_save_path = beamer_save_path.replace('.tex', 'proposal_{}.tex'.format(str(factor)))
with open(proposal_code_save_path, 'w') as f: f.write(proposal_full_code)
feedback = compile_tex(proposal_code_save_path)
img_path = pdf2img(proposal_code_save_path.replace(".tex", ".pdf"), proposal_tmp_dir)
proposal_imgs_path_list.append(img_path)
proposal_code_list.append(proposal_code)
prompt_img_path = path.join(proposal_tmp_dir, "meraged.png")
make_grid_with_labels(proposal_imgs_path_list, prompt_img_path, rows=2, cols=2)
imporve_agent.reset() # inference
user_msg = BaseMessage.make_user_message(
role_name="User",
content="\n".join([template_prompt, "Here are the choices A, B, C, D"]),
image_list=[Image.open(prompt_img_path)]
)
response = safe_step(imporve_agent, user_msg)
token_usage_improve.append(response.info['usage'])
# print(response.msgs[-1].content)
choice_str = extract_json_block(response.msgs[-1].content)
print(f"๐ค Model layout decision: {choice_str}")
choice = json.loads(choice_str)
refined_code = proposal_code_list[map_dic[choice["choice"]]]
frames[frame_idx]["text"] = refined_code
## update code
new_code = ["\\documentclass{beamer}", head, "\\begin{document}"]
section = []
subsection = []
for frame in frames:
if len(frame["section"]) != 0 and frame["section"] not in section:
new_code.append("\\section{{{}}}".format(frame["section"]))
section.append(frame["section"])
subsection = []
if len(frame["subsection"]) != 0 and frame["subsection"] not in subsection:
new_code.append("\\subsection{{{}}}".format(frame["subsection"]))
subsection.append(frame["subsection"])
new_code.append(add_small_after_blocks(frame["text"]))
new_code.append("\\end{document}")
new_code = "\n".join(new_code)
new_code_save_path = beamer_save_path.replace(".tex", "_refined.tex")
with open(new_code_save_path, 'w') as f: f.write(new_code)
feedback = compile_tex(new_code_save_path)
return new_code_save_path.replace(".tex", ".pdf"), token_usage_improve
def improve_per_slide(data):
idx, model_config, template_prompt, head, frame = data
## model for selecting the proposed result
imporve_model = ModelFactory.create(
model_platform=model_config["model_platform"],
model_type=model_config["model_type"],
model_config_dict=model_config.get("model_config"),
url=model_config.get("url", None),)
imporve_agent = ChatAgent(model=imporve_model, system_message="",)
factors = [1, 0.75, 0.5, 0.25]
map_dic = {"A": 0, "B": 1, "C": 2, "D": 3}
proposal_tmp_dir = path.join(path.dirname(beamer_save_path), 'proposal_imgs_'+str(idx))
os.makedirs(proposal_tmp_dir, exist_ok=True)
proposal_imgs_path_list = []
proposal_code_list = []
for factor in factors:
proposal_code = scale_includegraphics_widths(frame["text"], factor)
proposal_code = add_small_after_blocks(proposal_code)
proposal_full_code = '\n'.join(["\\documentclass{beamer}", head, "\\begin{document}", proposal_code, "\\end{document}"])
proposal_code_save_path = beamer_save_path.replace('.tex', 'proposal_{}.tex'.format(str(factor)))
with open(proposal_code_save_path, 'w') as f: f.write(proposal_full_code)
feedback = compile_tex(proposal_code_save_path)
img_path = pdf2img(proposal_code_save_path.replace(".tex", ".pdf"), proposal_tmp_dir)
proposal_imgs_path_list.append(img_path)
proposal_code_list.append(proposal_code)
prompt_img_path = path.join(proposal_tmp_dir, "meraged.png")
make_grid_with_labels(proposal_imgs_path_list, prompt_img_path, rows=2, cols=2)
imporve_agent.reset() # inference
user_msg = BaseMessage.make_user_message(
role_name="User",
content="\n".join([template_prompt, "Here are the choices A, B, C, D"]),
image_list=[Image.open(prompt_img_path)]
)
response = safe_step(imporve_agent, user_msg)
choice = json.loads(response.msgs[-1].content)
refined_code = proposal_code_list[map_dic[choice["choice"]]]
return idx, refined_code, response.info['usage']
def make_2x2_grid_with_labels(
img_paths: Sequence[str],
out_path: str,
cell_size: Tuple[int, int] = (512, 512),
gap: int = 16,
labels: Sequence[str] = ("A", "B", "C", "D"),
bg_color: Tuple[int, int, int] = (255, 255, 255),
font_path: Optional[str] = None,
font_size: Optional[int] = None,
) -> Path:
if len(img_paths) != 4: raise ValueError("img_paths must contain 4 img pathes")
cw, ch = cell_size
canvas_w = cw * 2 + gap
canvas_h = ch * 2 + gap
canvas = Image.new("RGB", (canvas_w, canvas_h), bg_color)
def _to_rgb(img: Image.Image) -> Image.Image:
if img.mode in ("RGBA", "LA"):
base = Image.new("RGB", img.size, bg_color)
base.paste(img, mask=img.split()[-1])
return base
return img.convert("RGB")
if font_size is None:
font_size = max(16, int(min(cw, ch) * 0.08))
font = None
if font_path:
try:
font = ImageFont.truetype(font_path, font_size)
except Exception:
font = None
if font is None:
for try_name in ["DejaVuSans-Bold.ttf", "Arial.ttf", "Helvetica.ttf"]:
try:
font = ImageFont.truetype(try_name, font_size)
break
except Exception:
continue
if font is None:
font = ImageFont.load_default()
draw = ImageDraw.Draw(canvas)
positions = [
(0, 0), # A
(cw + gap, 0), # B
(0, ch + gap), # C
(cw + gap, ch + gap) # D
]
for i, (p, (x0, y0)) in enumerate(zip(img_paths, positions)):
im = Image.open(p)
im = _to_rgb(im)
w, h = im.size
scale = min(cw / w, ch / h)
nw, nh = max(1, int(w * scale)), max(1, int(h * scale))
im_resized = im.resize((nw, nh), Image.BICUBIC)
px = x0 + (cw - nw) // 2
py = y0 + (ch - nh) // 2
canvas.paste(im_resized, (px, py))
label = labels[i]
margin = max(6, font_size // 4)
tx, ty = x0 + margin, y0 + margin
draw.text(
(tx, ty), label, font=font,
fill=(255, 255, 255),
stroke_width=max(1, font_size // 16),
stroke_fill=(0, 0, 0)
)
out_path = Path(out_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
canvas.save(out_path.as_posix())
def make_grid_with_labels(
img_paths: Sequence[str],
out_path: str,
cell_size: Tuple[int, int] = (512, 512),
gap: int = 16,
rows: int = 2,
cols: int = 3,
labels: Optional[Sequence[str]] = None, # ้ป่ฎค่ชๅจ A..Z
bg_color: Tuple[int, int, int] = (255, 255, 255),
font_path: Optional[str] = None,
font_size: Optional[int] = None,
) -> Path:
n = rows * cols
if len(img_paths) != n:
raise ValueError(f"img_paths must contain {n} image paths (got {len(img_paths)})")
if labels is None:
labels = list(string.ascii_uppercase[:n])
elif len(labels) != n:
raise ValueError(f"labels length must be {n} (got {len(labels)})")
cw, ch = cell_size
canvas_w = cw * cols + gap * (cols - 1)
canvas_h = ch * rows + gap * (rows - 1)
canvas = Image.new("RGB", (canvas_w, canvas_h), bg_color)
def _to_rgb(img: Image.Image) -> Image.Image:
if img.mode in ("RGBA", "LA"):
base = Image.new("RGB", img.size, bg_color)
base.paste(img, mask=img.split()[-1])
return base
return img.convert("RGB")
if font_size is None:
font_size = max(16, int(min(cw, ch) * 0.08))
font = None
if font_path:
try:
font = ImageFont.truetype(font_path, font_size)
except Exception:
font = None
if font is None:
for try_name in ["DejaVuSans-Bold.ttf", "Arial.ttf", "Helvetica.ttf"]:
try:
font = ImageFont.truetype(try_name, font_size)
break
except Exception:
continue
if font is None:
font = ImageFont.load_default()
draw = ImageDraw.Draw(canvas)
positions = []
for r in range(rows):
for c in range(cols):
x0 = c * (cw + gap)
y0 = r * (ch + gap)
positions.append((x0, y0))
for i, (p, (x0, y0)) in enumerate(zip(img_paths, positions)):
with Image.open(p) as im_raw:
im = _to_rgb(im_raw)
w, h = im.size
scale = min(cw / w, ch / h)
nw, nh = max(1, int(w * scale)), max(1, int(h * scale))
im_resized = im.resize((nw, nh), Image.BICUBIC)
px = x0 + (cw - nw) // 2
py = y0 + (ch - nh) // 2
canvas.paste(im_resized, (px, py))
label = labels[i]
margin = max(6, font_size // 4)
tx, ty = x0 + margin, y0 + margin
draw.text(
(tx, ty), label, font=font,
fill=(255, 0, 0),
stroke_width=max(1, font_size // 16),
stroke_fill=(255, 0, 0)
)
out_path = Path(out_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
canvas.save(out_path.as_posix())
return out_path
def pdf2img(pdf_path, image_dir, dpi=300, fmt="png", strict_single_page=True):
pdf_path = Path(pdf_path)
image_dir = Path(image_dir)
if pdf_path.suffix.lower() != ".pdf": raise ValueError(f"not pdf file: {pdf_path}")
if not pdf_path.exists(): raise FileNotFoundError(f"can not find: {pdf_path}")
with fitz.open(pdf_path) as doc:
if strict_single_page and doc.page_count != 1: raise ValueError(f"not single slide {doc.page_count}: {pdf_path}")
page = doc[0]
scale = dpi / 72.0
mat = fitz.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat, alpha=False)
image_dir.mkdir(parents=True, exist_ok=True)
fmt = fmt.lower()
if fmt == "jpeg":
fmt = "jpg"
out_path = image_dir / f"{pdf_path.stem}.{fmt}"
pix.save(out_path.as_posix())
return out_path
### smaller the front size
def add_small_after_blocks(tex) -> str:
text = tex
pattern = re.compile(
r'(?m)^([ \t]*)\\begin\{(?:block|alertblock|exampleblock)\}'
r'(?:<[^>\n]*>)?(?:\[[^\]\n]*\])?\s*\{[^}]*\}[^\n]*\r?\n'
r'([ \t]*)(?!\\small\b)'
)
def repl(m: re.Match) -> str:
return f"{m.group(0)}\\footnotesize\n{m.group(2)}"
new_text = pattern.sub(repl, text)
return new_text
### smaller the figure size
def scale_includegraphics_widths(tex: str, factor: float, precision: int = 3, add_if_missing: bool = False) -> str:
INCLUDE_RE = re.compile(
r'\\includegraphics(?:\s*\[(?P<opts>[^\]]*)\])?\s*\{(?P<path>[^}]*)\}',
re.DOTALL,
)
WIDTH_RE = re.compile(r'(?<![a-zA-Z])width\s*=\s*([^,\]]+)', re.IGNORECASE)
REL_RE = re.compile(r'^\s*(?:(\d*\.?\d+)|\.(\d+))?\s*\\(textwidth|linewidth|columnwidth)\b')
def scale_rel(expr: str) -> str | None:
val = expr.strip().strip("{}")
m = REL_RE.match(val)
if not m:
return None
num = m.group(1)
if num is None and m.group(2) is not None:
num = "0." + m.group(2)
k = 1.0 if not num else float(num)
new_k = round(k * factor, precision)
new_k_str = f"{new_k:g}"
return f"{new_k_str}\\{m.group(3)}"
def repl_inc(mm: re.Match) -> str:
opts = mm.group("opts")
path = mm.group("path")
if opts is None or opts.strip() == "":
if add_if_missing:
return f"\\includegraphics[width={factor:g}\\textwidth]{{{path}}}"
else:
return mm.group(0)
def repl_width(mw: re.Match) -> str:
expr = mw.group(1)
scaled = scale_rel(expr)
return f"width={scaled}" if scaled is not None else mw.group(0)
new_opts = WIDTH_RE.sub(repl_width, opts)
if new_opts == opts and add_if_missing:
new_opts = f"width={factor:g}\\textwidth," + opts.strip()
return f"\\includegraphics[{new_opts}]{{{path}}}"
return INCLUDE_RE.sub(repl_inc, tex)
def _line_starts(text):
starts = [0]
for m in re.finditer('\n', text):
starts.append(m.end())
return starts
def _pos_to_line(pos, line_starts):
return bisect.bisect_right(line_starts, pos)
def compute_frame_spans(code: str):
line_starts = _line_starts(code)
sec_re = re.compile(r'(?m)^\\section\*?(?:\[[^\]]*\])?\{([^}]*)\}')
sub_re = re.compile(r'(?m)^\\subsection\*?(?:\[[^\]]*\])?\{([^}]*)\}')
sections = []
for m in sec_re.finditer(code):
pos = m.start()
sections.append({
"pos": pos,
"line": _pos_to_line(pos, line_starts),
"title": m.group(1).strip()
})
subsections = []
for m in sub_re.finditer(code):
pos = m.start()
subsections.append({
"pos": pos,
"line": _pos_to_line(pos, line_starts),
"title": m.group(1).strip()
})
sec_pos_list = [s["pos"] for s in sections]
sub_pos_list = [s["pos"] for s in subsections]
frame_re = re.compile(
r'\\begin\{frame\}(?:<[^>\n]*>)?(?:\[[^\]\n]*\])?(?:\{.*?\}){0,2}.*?\\end\{frame\}',
re.DOTALL
)
frametitle_re = re.compile(r'\\frametitle(?:<[^>]*>)?(?:\[[^\]]*\])?\{([^}]*)\}')
frame_env_title_re = re.compile(
r'^\\begin\{frame\}(?:<[^>\n]*>)?(?:\[[^\]\n]*\])?\s*\{([^}]*)\}',
re.DOTALL
)
frames = []
for i, m in enumerate(frame_re.finditer(code)):
start, end = m.start(), m.end()
start_line = _pos_to_line(start, line_starts)
end_line = _pos_to_line(end - 1, line_starts)
text = m.group(0)
t = frametitle_re.search(text)
if t:
title = t.group(1).strip()
else:
t2 = frame_env_title_re.search(text)
title = t2.group(1).strip() if t2 else ""
if sec_pos_list:
j = bisect_right(sec_pos_list, start) - 1
if j >= 0:
sec_title = sections[j]["title"]
sec_line = sections[j]["line"]
else:
sec_title, sec_line = "", None
else:
sec_title, sec_line = "", None
if sub_pos_list:
k = bisect_right(sub_pos_list, start) - 1
if k >= 0:
sub_title = subsections[k]["title"]
sub_line = subsections[k]["line"]
else:
sub_title, sub_line = "", None
else:
sub_title, sub_line = "", None
frames.append({
"idx": i,
"start": start,
"end": end,
"start_line": start_line,
"end_line": end_line,
"title": title,
"section": sec_title,
"section_line": sec_line,
"subsection": sub_title,
"subsection_line": sub_line,
"text": text
})
return frames
## fix the grammer error with complie error
correct_prompt_path = "./Paper2Video/src/prompts/slide_beamer_correct.txt"
def correcte_error(beamer_code, error_info, agent):
with open(correct_prompt_path, 'r', encoding='utf-8') as f_prompt: templete_prompt = f_prompt.read()
inference_prompt = (
templete_prompt,
"This is the latex code for slides:", beamer_code,
"The errors are:", "\n".join(error_info)
)
inference_prompt = "\n".join(map(str, inference_prompt))
print(len(inference_prompt))
user_msg = BaseMessage.make_user_message(role_name="User", content=inference_prompt)
response = safe_step(agent, user_msg)
code = extract_beamer_code(response.msgs[-1].content)
return code, response.info['usage']
def safe_step(agent, user_msg, max_retries=5):
for attempt in range(max_retries):
response = agent.step(user_msg)
if getattr(response, "msgs", None) and len(response.msgs) > 0:
return response
print(f"[Retry {attempt+1}/{max_retries}] Empty or invalid response, retrying...")
raise RuntimeError(f"Agent failed after {max_retries} retries: {user_msg}")
# def find_all_tex_files(root_dir):
# tex_files = []
# for dirpath, dirnames, filenames in os.walk(root_dir):
# for filename in filenames:
# if filename.endswith(".tex"):
# full_path = os.path.join(dirpath, filename)
# with open(full_path, 'r', encoding='utf-8') as f:
# tex_files.append(f.read())
# return tex_files
def find_all_tex_files(root_dir):
tex_files = []
for dirpath, dirnames, filenames in os.walk(root_dir):
for filename in filenames:
if filename.endswith(".tex"):
full_path = os.path.join(dirpath, filename)
try:
with open(full_path, 'r', encoding='utf-8') as f:
tex_files.append(f.read())
except Exception as e:
print(f"โ ๏ธ Skip {full_path}: {e}")
continue
return tex_files
def compile_tex(tex_path):
tex_path = Path(tex_path).resolve()
if not tex_path.exists(): raise FileNotFoundError(f"Tex file {tex_path} does not exist")
try:
result = subprocess.run(
["tectonic", str(tex_path)],
check=True,
capture_output=True,
text=True
)
print("๐ ๏ธ Compiling LaTeX file...")
print(result.stdout)
return "\n".join([result.stdout, result.stderr])
except subprocess.CalledProcessError as e:
print("Compilation failed:")
print(e.stderr)
return e.stderr
|