JackAILab's picture
Update app.py
d8e6a5c verified
import gradio as gr
import torch
import os
import glob
import spaces
import numpy as np
from datetime import datetime
from PIL import Image
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
from pipline_StableDiffusionXL_ConsistentID import ConsistentIDStableDiffusionXLPipeline
from huggingface_hub import hf_hub_download
from models.BiSeNet.model import BiSeNet
# ====================================================================================
# Global model management for ZeroGPU compatibility
# ====================================================================================
DEVICE = "cuda"
pipe = None
bise_net = None
def load_models():
"""Load all models on CPU to avoid ZeroGPU initialization issues"""
global pipe, bise_net
if pipe is not None:
return
print("⏳ Loading models on CPU...")
base_model_path = "SG161222/RealVisXL_V3.0"
consistentID_path = hf_hub_download(
repo_id="JackAILab/ConsistentID",
filename="ConsistentID_SDXL-v1.bin",
repo_type="model"
)
# Load pipeline on CPU
pipe = ConsistentIDStableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
safety_checker=None,
variant="fp16"
)
# Load BiSeNet
bise_net_cp_path = hf_hub_download(
repo_id="JackAILab/ConsistentID",
filename="face_parsing.pth",
local_dir="./checkpoints"
)
bise_net = BiSeNet(n_classes=19)
bise_net.load_state_dict(torch.load(bise_net_cp_path, map_location="cpu"))
# Load ConsistentID components
pipe.load_ConsistentID_model(
os.path.dirname(consistentID_path),
bise_net,
subfolder="",
weight_name=os.path.basename(consistentID_path),
trigger_word="img",
)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
print("✅ Models loaded successfully")
load_models()
# ====================================================================================
# Inference function with GPU management
# ====================================================================================
@spaces.GPU(duration=180) # Extended duration for SDXL
def generate_image(
selected_template_images,
custom_image,
prompt,
negative_prompt,
prompt_selected,
model_selected_tab,
prompt_selected_tab,
width,
height,
merge_steps,
seed,
num_steps
):
"""
Generate image using ConsistentID-SDXL
"""
global pipe, bise_net
print("🚀 Moving models to GPU...")
# Move to GPU
pipe.to(DEVICE)
pipe.image_encoder.to(DEVICE)
pipe.image_proj_model.to(DEVICE)
pipe.FacialEncoder.to(DEVICE)
bise_net.to(DEVICE)
try:
# Select input image
if model_selected_tab == 0:
input_image = load_image(Image.open(selected_template_images))
else:
input_image = load_image(Image.fromarray(custom_image))
# Select prompt
if prompt_selected_tab == 0:
prompt = prompt_selected
negative_prompt = ""
need_safetycheck = False
else:
need_safetycheck = True
# Default prompts
if not prompt or prompt.strip() == "":
prompt = "A person, professional portrait"
if not negative_prompt or negative_prompt.strip() == "":
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
# Enhance prompt
enhanced_prompt = f"cinematic photo, {prompt}, 50mm photograph, half-length portrait, film, bokeh, professional, 4k, highly detailed"
# Negative prompt enhancement
negative_enhancement = "((cross-eye)), ((cross-eyed)), (((NSFW))), (nipple), ((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))"
final_negative_prompt = negative_prompt + ", " + negative_enhancement
generator = torch.Generator(device=DEVICE).manual_seed(seed)
print(f"🎨 Generating with prompt: {enhanced_prompt[:100]}...")
images = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
input_id_images=input_image,
input_image_path=selected_template_images if model_selected_tab == 0 else None,
negative_prompt=final_negative_prompt,
num_images_per_prompt=1,
num_inference_steps=num_steps,
start_merge_step=merge_steps,
generator=generator,
retouching=False,
need_safetycheck=need_safetycheck,
).images[0]
print("✅ Generation completed")
return np.array(images)
except Exception as e:
print(f"❌ Error: {str(e)}")
raise
finally:
# Clean up GPU
print("🧹 Releasing GPU memory...")
pipe.to("cpu")
pipe.image_encoder.to("cpu")
pipe.image_proj_model.to("cpu")
pipe.FacialEncoder.to("cpu")
bise_net.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ====================================================================================
# Beautiful Gradio Interface
# ====================================================================================
# Get template images
preset_templates = glob.glob("./images/templates/*.png") + glob.glob("./images/templates/*.jpg")
# Custom CSS for beautiful interface
custom_css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.main-title {
text-align: center;
font-size: 2.5em;
font-weight: 700;
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1em;
}
.subtitle {
text-align: center;
font-size: 1.1em;
color: #666;
margin-bottom: 2em;
}
.section-header {
font-size: 1.3em;
font-weight: 600;
margin: 1em 0 0.5em 0;
color: #333;
}
.info-box {
background: #f8f9fa;
border-left: 4px solid #667eea;
padding: 1em;
margin: 1em 0;
border-radius: 4px;
}
.generate-btn {
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-size: 1.1em !important;
font-weight: 600 !important;
padding: 0.8em 2em !important;
border-radius: 8px !important;
}
.gallery-item {
border-radius: 8px;
overflow: hidden;
}
"""
# Template prompts with better organization
template_prompts = [
("👰 Wedding", "A woman in an elegant wedding dress, professional photography"),
("👑 Royalty", "A person as royalty, sitting on throne in gorgeous palace, regal attire"),
("🏖️ Beach", "A person sitting at the beach with beautiful sunset, relaxed atmosphere"),
("👮 Officer", "A person as police officer, professional uniform, half body shot"),
("⛵ Sailor", "A person as sailor, on boat deck above ocean, nautical uniform"),
("🎧 Music", "A person wearing headphones, listening to music, modern setting"),
("🚒 Firefighter", "A person as firefighter, professional gear, half body shot"),
("💼 Business", "A person in business attire, professional corporate environment"),
("🎨 Artist", "A person as artist in studio, creative atmosphere, artistic clothing"),
("🔬 Scientist", "A person as scientist in laboratory, lab coat, professional setting"),
]
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="ConsistentID-SDXL") as demo:
# Header
gr.HTML("""
<div class="main-title">✨ ConsistentID-SDXL Demo ✨</div>
<div class="subtitle">
High-fidelity portrait generation with consistent identity preservation
</div>
""")
gr.Markdown("""
<div style='text-align: center; margin-bottom: 2em;'>
<a href='https://github.com/JackAILab/ConsistentID' target='_blank' style='text-decoration: none;'>
⭐ Star us on GitHub
</a> |
<a href='https://arxiv.org/abs/2404.16771' target='_blank' style='text-decoration: none;'>
📄 Read the Paper
</a>
</div>
""")
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
gr.HTML("<div class='section-header'>📸 Input Image</div>")
model_selected_tab = gr.Number(value=0, visible=False)
with gr.Tabs() as image_tabs:
with gr.Tab("🖼️ Templates") as template_tab:
template_gallery = gr.Gallery(
value=[(img, img) for img in preset_templates],
columns=4,
rows=2,
height=300,
object_fit="cover",
show_label=False,
elem_classes="gallery-item"
)
selected_template = gr.Textbox(visible=False)
def select_template(evt: gr.SelectData):
return preset_templates[evt.index]
template_gallery.select(select_template, None, selected_template)
with gr.Tab("📤 Upload") as upload_tab:
custom_image = gr.Image(
label="Upload your image",
type="numpy",
height=300
)
template_tab.select(fn=lambda: 0, inputs=[], outputs=[model_selected_tab])
upload_tab.select(fn=lambda: 1, inputs=[], outputs=[model_selected_tab])
gr.HTML("<div class='section-header'>✍️ Prompt</div>")
prompt_selected_tab = gr.Number(value=0, visible=False)
with gr.Tabs() as prompt_tabs:
with gr.Tab("📋 Templates") as template_prompt_tab:
prompt_dropdown = gr.Dropdown(
choices=[f"{icon} {name}" for icon, name in template_prompts],
value="👮 Officer",
label="Choose a style",
scale=1
)
# Hidden textbox to store actual prompt
prompt_mapping = {f"{icon} {name}": prompt for (icon, name), (_, prompt) in zip([(icon, name) for icon, name in template_prompts], template_prompts)}
prompt_selected = gr.Textbox(value=template_prompts[3][1], visible=False)
def update_prompt(choice):
for (icon, name), (_, prompt) in zip([(icon, name) for icon, name in template_prompts], template_prompts):
if f"{icon} {name}" == choice:
return prompt
return template_prompts[0][1]
prompt_dropdown.change(update_prompt, inputs=[prompt_dropdown], outputs=[prompt_selected])
with gr.Tab("✏️ Custom") as custom_prompt_tab:
custom_prompt = gr.Textbox(
label="Your prompt",
placeholder="A person wearing a santa hat, festive atmosphere...",
lines=3
)
custom_negative = gr.Textbox(
label="Negative prompt (optional)",
placeholder="blurry, low quality...",
lines=2
)
template_prompt_tab.select(fn=lambda: 0, inputs=[], outputs=[prompt_selected_tab])
custom_prompt_tab.select(fn=lambda: 1, inputs=[], outputs=[prompt_selected_tab])
gr.HTML("<div class='section-header'>⚙️ Generation Settings</div>")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=1280,
value=896,
step=64
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1280,
value=1152,
step=64
)
with gr.Row():
num_steps = gr.Slider(
label="Steps",
minimum=20,
maximum=50,
value=30,
step=1
)
merge_steps = gr.Slider(
label="Merge Step",
minimum=10,
maximum=40,
value=20,
step=1
)
seed = gr.Slider(
label="🎲 Seed",
minimum=0,
maximum=2147483647,
value=42,
step=1
)
generate_btn = gr.Button(
"🎨 Generate Image",
variant="primary",
size="lg",
elem_classes="generate-btn"
)
# Right column - Output
with gr.Column(scale=1):
gr.HTML("<div class='section-header'>🖼️ Generated Result</div>")
output_image = gr.Image(
label="Output",
height=600,
show_label=False
)
gr.HTML("""
<div class='info-box'>
<h4>💡 Tips for Best Results:</h4>
<ul>
<li>✅ Use clear face images with good lighting</li>
<li>✅ Faces should be clearly visible and not too small</li>
<li>✅ Use "man" or "woman" instead of "person" in prompts</li>
<li>⏱️ Generation takes 1-3 minutes with ZeroGPU</li>
</ul>
</div>
""")
gr.Markdown("""
<div style='text-align: center; margin-top: 2em; color: #666; font-size: 0.9em;'>
Powered by ConsistentID-SDXL |
<a href='https://huggingface.co/JackAILab/ConsistentID' target='_blank'>Model Card</a>
</div>
""")
# Connect the button
generate_btn.click(
fn=generate_image,
inputs=[
selected_template,
custom_image,
custom_prompt,
custom_negative,
prompt_selected,
model_selected_tab,
prompt_selected_tab,
width,
height,
merge_steps,
seed,
num_steps
],
outputs=output_image
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch()