Spaces:
Running
on
Zero
Running
on
Zero
Update pipline_StableDiffusion_ConsistentID.py
Browse files
pipline_StableDiffusion_ConsistentID.py
CHANGED
|
@@ -5,7 +5,8 @@ import numpy as np
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
-
from insightface.app import FaceAnalysis
|
|
|
|
| 9 |
from safetensors import safe_open
|
| 10 |
from huggingface_hub.utils import validate_hf_hub_args
|
| 11 |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
|
@@ -15,16 +16,20 @@ from diffusers.utils import _get_model_file
|
|
| 15 |
from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
|
| 16 |
from functions import ProjPlusModel, masks_for_unique_values
|
| 17 |
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
|
| 18 |
-
from modelscope.outputs import OutputKeys
|
| 19 |
-
from modelscope.pipelines import pipeline
|
| 20 |
|
| 21 |
-
|
|
|
|
| 22 |
import sys
|
| 23 |
sys.path.append("./models/BiSeNet")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
from model import BiSeNet
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
PipelineImageInput = Union[
|
| 29 |
PIL.Image.Image,
|
| 30 |
torch.FloatTensor,
|
|
@@ -43,13 +48,13 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 43 |
subfolder: str = '',
|
| 44 |
trigger_word_ID: str = '<|image|>',
|
| 45 |
trigger_word_facial: str = '<|facial|>',
|
| 46 |
-
image_encoder_path: str = '/
|
| 47 |
torch_dtype = torch.float16,
|
| 48 |
num_tokens = 4,
|
| 49 |
lora_rank= 128,
|
| 50 |
**kwargs,
|
| 51 |
):
|
| 52 |
-
self.lora_rank = lora_rank
|
| 53 |
self.torch_dtype = torch_dtype
|
| 54 |
self.num_tokens = num_tokens
|
| 55 |
self.set_ip_adapter()
|
|
@@ -68,7 +73,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 68 |
### BiSeNet
|
| 69 |
self.bise_net = BiSeNet(n_classes = 19)
|
| 70 |
self.bise_net.cuda()
|
| 71 |
-
self.bise_net_cp='
|
| 72 |
self.bise_net.load_state_dict(torch.load(self.bise_net_cp))
|
| 73 |
self.bise_net.eval()
|
| 74 |
# Colors for all 20 parts
|
|
@@ -83,7 +88,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 83 |
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
| 84 |
|
| 85 |
### LLVA Optional
|
| 86 |
-
self.llva_model_path = "
|
| 87 |
self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth."
|
| 88 |
self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path)
|
| 89 |
|
|
@@ -95,9 +100,6 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 95 |
).to(self.device, dtype=self.torch_dtype)
|
| 96 |
self.FacialEncoder = FacialEncoder(self.image_encoder).to(self.device, dtype=self.torch_dtype)
|
| 97 |
|
| 98 |
-
# Modelscope 美肤用
|
| 99 |
-
self.skin_retouching = pipeline('skin-retouching-torch', model='damo/cv_unet_skin_retouching_torch', model_revision='v1.0.2')
|
| 100 |
-
|
| 101 |
# Load the main state dict first.
|
| 102 |
cache_dir = kwargs.pop("cache_dir", None)
|
| 103 |
force_download = kwargs.pop("force_download", False)
|
|
@@ -183,7 +185,6 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 183 |
hidden_states = []
|
| 184 |
uncond_hidden_states = []
|
| 185 |
for facial_clip_image in facial_clip_images:
|
| 186 |
-
# 分别把这几个裁剪出来的五官局部照用CLIP提一次
|
| 187 |
hidden_state = self.image_encoder(facial_clip_image.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2]
|
| 188 |
uncond_hidden_state = self.image_encoder(torch.zeros_like(facial_clip_image, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2]
|
| 189 |
hidden_states.append(hidden_state)
|
|
@@ -191,7 +192,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 191 |
multi_facial_embeds = torch.stack(hidden_states)
|
| 192 |
uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)
|
| 193 |
|
| 194 |
-
# condition
|
| 195 |
facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
| 196 |
|
| 197 |
# uncondition
|
|
@@ -204,15 +205,13 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 204 |
|
| 205 |
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
|
| 206 |
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
|
| 207 |
-
# 先处理,变成1x3x224x224的clip_image,然后用图像编码器,编成1x257x1280
|
| 208 |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 209 |
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
| 210 |
-
|
| 211 |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
|
| 212 |
image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
| 213 |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
| 214 |
-
|
| 215 |
-
# 而uncond_image_prompt_embeds像是假faceID与假图片在CLIP提取的特征做注意力
|
| 216 |
return image_prompt_tokens, uncond_image_prompt_embeds
|
| 217 |
|
| 218 |
def set_scale(self, scale):
|
|
@@ -223,13 +222,12 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 223 |
@torch.inference_mode()
|
| 224 |
def get_prepare_faceid(self, face_image):
|
| 225 |
faceid_image = np.array(face_image)
|
| 226 |
-
# 下面这句是用insightmodel获取faceid
|
| 227 |
faces = self.app.get(faceid_image)
|
| 228 |
if faces==[]:
|
| 229 |
faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
|
| 230 |
-
else
|
| 231 |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
| 232 |
-
|
| 233 |
return faceid_embeds
|
| 234 |
|
| 235 |
@torch.inference_mode()
|
|
@@ -247,14 +245,13 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 247 |
img = to_tensor(image)
|
| 248 |
img = torch.unsqueeze(img, 0)
|
| 249 |
img = img.float().cuda()
|
| 250 |
-
out = self.bise_net(img)[0]
|
| 251 |
-
parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
|
| 252 |
|
| 253 |
im = np.array(image_resize_PIL)
|
| 254 |
vis_im = im.copy().astype(np.uint8)
|
| 255 |
stride=1
|
| 256 |
-
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
| 257 |
-
#下句我就不明白了,一比一缩放插值一下,不是没什么用嘛
|
| 258 |
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
| 259 |
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
| 260 |
|
|
@@ -264,8 +261,8 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 264 |
index = np.where(vis_parsing_anno == pi)
|
| 265 |
vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi]
|
| 266 |
|
| 267 |
-
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
| 268 |
-
vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
| 269 |
|
| 270 |
return vis_parsing_anno_color, vis_parsing_anno
|
| 271 |
|
|
@@ -293,24 +290,20 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 293 |
|
| 294 |
return face_caption
|
| 295 |
|
| 296 |
-
|
| 297 |
-
|
| 298 |
@torch.inference_mode()
|
| 299 |
def get_prepare_facemask(self, input_image_file):
|
| 300 |
-
|
| 301 |
vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file)
|
| 302 |
parsing_mask_list = masks_for_unique_values(vis_parsing_anno)
|
| 303 |
|
| 304 |
key_parsing_mask_list = {}
|
| 305 |
key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
|
| 306 |
-
# TODO 背景信息还没有用上,看看有没有必要
|
| 307 |
-
|
| 308 |
processed_keys = set()
|
| 309 |
for key, mask_image in parsing_mask_list.items():
|
| 310 |
if key in key_list:
|
| 311 |
if "_" in key:
|
| 312 |
prefix = key.split("_")[1]
|
| 313 |
-
if prefix in processed_keys:
|
| 314 |
continue
|
| 315 |
else:
|
| 316 |
key_parsing_mask_list[key] = mask_image
|
|
@@ -332,15 +325,12 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 332 |
device: Optional[torch.device] = None,
|
| 333 |
):
|
| 334 |
device = device or self._execution_device
|
| 335 |
-
|
| 336 |
-
#就是说改这个prompt,让他的关键词顺序与key_parsing_mask_list_align中Eye Ear Nose的出现顺序一致
|
| 337 |
-
#并且在这些关键词后加上<|facial|>的文本标记
|
| 338 |
face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list)
|
| 339 |
|
| 340 |
-
# 与用户输入的prompt结合
|
| 341 |
prompt_face = prompt + "Detail:" + face_caption_align
|
| 342 |
|
| 343 |
-
max_text_length=330
|
| 344 |
if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, padding="max_length",truncation=False,return_tensors="pt").input_ids[0])!=77:
|
| 345 |
prompt_face = "Detail:" + face_caption_align + " Caption:" + prompt
|
| 346 |
|
|
@@ -350,17 +340,12 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 350 |
|
| 351 |
prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "")
|
| 352 |
tokenizer = self.tokenizer
|
| 353 |
-
# level 3 设定触发词 并获取"<|facial|>"触发词 id-49409
|
| 354 |
facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
|
| 355 |
-
image_token_id = None
|
| 356 |
|
| 357 |
-
# clean_input_id就是1x77长经典的SD用的tokens,里面没有触发词的编码
|
| 358 |
-
# image_token_mask是1x77长的false,好像暂时没什么用,
|
| 359 |
-
# facial_token_mask是1x77长的false中间有几个true,true是触发词的位置
|
| 360 |
-
# 还有一个问题是长度就77,怎么做prompt engineering?TODO
|
| 361 |
clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends(
|
| 362 |
prompt_face, image_token_id, facial_token_id, tokenizer)
|
| 363 |
-
|
| 364 |
image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx(
|
| 365 |
image_token_mask, facial_token_mask, num_id_images, max_num_facials )
|
| 366 |
|
|
@@ -375,18 +360,17 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 375 |
clip_image_processor = CLIPImageProcessor()
|
| 376 |
|
| 377 |
num_facial_part = len(key_parsing_mask_list)
|
| 378 |
-
|
| 379 |
for key in key_parsing_mask_list:
|
| 380 |
key_mask=key_parsing_mask_list[key]
|
| 381 |
facial_mask.append(transform_mask(key_mask))
|
| 382 |
-
# key_mask_raw_image就是按照五官的mask截取出原图的一小部分区域
|
| 383 |
key_mask_raw_image = fetch_mask_raw_image(input_image_file,key_mask)
|
| 384 |
parsing_clip_image = clip_image_processor(images=key_mask_raw_image, return_tensors="pt").pixel_values
|
| 385 |
facial_clip_image.append(parsing_clip_image)
|
| 386 |
|
| 387 |
padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
|
| 388 |
padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))
|
| 389 |
-
|
| 390 |
if num_facial_part < max_num_facials:
|
| 391 |
facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
|
| 392 |
facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)]
|
|
@@ -394,9 +378,8 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 394 |
facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0)
|
| 395 |
facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1)
|
| 396 |
|
| 397 |
-
return facial_clip_image, facial_mask
|
| 398 |
|
| 399 |
-
# pipe入口是这里
|
| 400 |
@torch.no_grad()
|
| 401 |
def __call__(
|
| 402 |
self,
|
|
@@ -420,12 +403,9 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 420 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 421 |
callback_steps: int = 1,
|
| 422 |
input_id_images: PipelineImageInput = None,
|
| 423 |
-
reference_id_images: PipelineImageInput =None,
|
| 424 |
start_merge_step: int = 0,
|
| 425 |
class_tokens_mask: Optional[torch.LongTensor] = None,
|
| 426 |
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
| 427 |
-
retouching: bool=False,
|
| 428 |
-
need_safetycheck: bool=True,
|
| 429 |
):
|
| 430 |
# 0. Default height and width to unet
|
| 431 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
@@ -451,7 +431,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 451 |
if prompt is not None and isinstance(prompt, str):
|
| 452 |
batch_size = 1
|
| 453 |
elif prompt is not None and isinstance(prompt, list):
|
| 454 |
-
batch_size = len(prompt)
|
| 455 |
else:
|
| 456 |
batch_size = prompt_embeds.shape[0]
|
| 457 |
|
|
@@ -459,42 +439,26 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 459 |
do_classifier_free_guidance = guidance_scale >= 1.0
|
| 460 |
input_image_file = input_id_images[0]
|
| 461 |
|
| 462 |
-
|
| 463 |
-
if reference_id_images:
|
| 464 |
-
references_faceid_embeds=[]
|
| 465 |
-
for reference_image in reference_id_images:
|
| 466 |
-
references_faceid_embeds.append(self.get_prepare_faceid(face_image=reference_image))
|
| 467 |
-
references_faceid_embeds = torch.stack(references_faceid_embeds, dim=0) #torch.Size([16, 1, 512])
|
| 468 |
-
references_faceid_embeds_mean=torch.mean(references_faceid_embeds, dim=0)
|
| 469 |
-
# references_faceid_embeds_var=torch.var(references_faceid_embeds, dim=0)
|
| 470 |
-
# references_faceid_embeds_sample=torch.normal(references_faceid_embeds_mean, references_faceid_embeds_var)
|
| 471 |
-
|
| 472 |
-
# 这里不是很理解,faceid推理时是哪里来的
|
| 473 |
-
# insightface提的,1X512
|
| 474 |
-
faceid_embeds = self.get_prepare_faceid(face_image=input_image_file) #TODO 用gradio的时候打开这句关掉下句
|
| 475 |
-
# faceid_embeds = references_faceid_embeds_mean # 用参考人像集中的采样来做id
|
| 476 |
-
# 推理的时候没有用到llava的detailed面部描述嘛?
|
| 477 |
-
# 无
|
| 478 |
face_caption = self.get_prepare_llva_caption(input_image_file)
|
| 479 |
-
# 问题有,没识别到左眼左耳;这右耳的mask实在是太小了,聊胜于无,
|
| 480 |
key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file)
|
| 481 |
|
| 482 |
-
# 这个是断言语句,就是guidance_scale >= 1.0时继续允许,否则抛出报错
|
| 483 |
assert do_classifier_free_guidance
|
| 484 |
|
| 485 |
# 3. Encode input prompt
|
| 486 |
num_id_images = len(input_id_images)
|
| 487 |
|
| 488 |
(
|
| 489 |
-
prompt_text_only,
|
| 490 |
-
clean_input_id,
|
| 491 |
-
key_parsing_mask_list_align,
|
| 492 |
-
facial_token_mask,
|
| 493 |
-
facial_token_idx,
|
| 494 |
facial_token_idx_mask,
|
| 495 |
) = self.encode_prompt_with_trigger_word(
|
| 496 |
prompt = prompt,
|
| 497 |
-
face_caption = face_caption
|
|
|
|
| 498 |
key_parsing_mask_list=key_parsing_mask_list,
|
| 499 |
device=device,
|
| 500 |
max_num_facials = 5,
|
|
@@ -506,41 +470,35 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 506 |
|
| 507 |
# 4. Encode input prompt without the trigger word for delayed conditioning
|
| 508 |
encoder_hidden_states = self.text_encoder(clean_input_id.to(device))[0]
|
| 509 |
-
|
| 510 |
-
# 这个就是CLIP的encoder,没有做修改。
|
| 511 |
prompt_embeds = self._encode_prompt(
|
| 512 |
prompt_text_only,
|
| 513 |
device=device,
|
| 514 |
num_images_per_prompt=num_images_per_prompt,
|
| 515 |
do_classifier_free_guidance=True,
|
| 516 |
-
negative_prompt=negative_prompt,
|
| 517 |
-
)
|
| 518 |
negative_encoder_hidden_states_text_only = prompt_embeds[0:num_images_per_prompt]
|
| 519 |
encoder_hidden_states_text_only = prompt_embeds[num_images_per_prompt:]
|
| 520 |
|
| 521 |
# 5. Prepare the input ID images
|
| 522 |
-
prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=
|
| 523 |
-
|
| 524 |
-
# 上面两个编码完之后是1x4x768,prompt_tokens_faceid是与整个图像做完注意力的faceid
|
| 525 |
-
# uncond_prompt_tokens_faceid,之所以要这个uncond的,是CF guidance的公式需要,需要保留一定的多样性,
|
| 526 |
facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=512, max_num_facials=5)
|
| 527 |
-
# 上面这两个处理完是5x3x224x224,5x512x512,推理只用到facial_clip_image,就是原图与mask的与,并且所放到了224x224
|
| 528 |
facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype)
|
| 529 |
-
# 这里,有必要把facial_clip_images的图片印出来看看,看看覆盖面积大不大
|
| 530 |
facial_token_mask = facial_token_mask.to(device)
|
| 531 |
facial_token_idx_mask = facial_token_idx_mask.to(device)
|
| 532 |
negative_encoder_hidden_states = negative_encoder_hidden_states_text_only
|
| 533 |
|
| 534 |
cross_attention_kwargs = {}
|
| 535 |
|
| 536 |
-
# 6. Get the update text
|
| 537 |
prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_encoder_hidden_states, \
|
| 538 |
facial_clip_images, facial_token_mask, facial_token_idx_mask)
|
| 539 |
-
|
| 540 |
-
# prompt_tokens_faceid本是insightface提取的特征的,也就是faceid eb,再融合了用全图的CLIP特征,融合的时候有注意力机制
|
| 541 |
prompt_embeds = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1)
|
| 542 |
negative_prompt_embeds = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1)
|
| 543 |
-
|
| 544 |
prompt_embeds = self._encode_prompt(
|
| 545 |
prompt,
|
| 546 |
device,
|
|
@@ -550,8 +508,6 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 550 |
prompt_embeds=prompt_embeds,
|
| 551 |
negative_prompt_embeds=negative_prompt_embeds,
|
| 552 |
)
|
| 553 |
-
# 从SD这个出来的出来得到的prompt_embeds torch.Size([2, 81, 768]),我猜就是在第一维把有无条件的两个prompt_embeds cat了一下
|
| 554 |
-
# 下面这两句后prompt_embeds torch.Size([3, 81, 768]),又在后面第一维加了纯文本与faceid eb的融合
|
| 555 |
prompt_embeds_text_only = torch.cat([encoder_hidden_states_text_only, prompt_tokens_faceid], dim=1)
|
| 556 |
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds_text_only], dim=0)
|
| 557 |
|
|
@@ -574,9 +530,9 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 574 |
|
| 575 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 576 |
(
|
| 577 |
-
null_prompt_embeds,
|
| 578 |
-
augmented_prompt_embeds,
|
| 579 |
-
text_prompt_embeds,
|
| 580 |
) = prompt_embeds.chunk(3)
|
| 581 |
|
| 582 |
# 9. Denoising loop
|
|
@@ -597,7 +553,7 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 597 |
[null_prompt_embeds, augmented_prompt_embeds], dim=0
|
| 598 |
)
|
| 599 |
|
| 600 |
-
# predict the noise residual
|
| 601 |
noise_pred = self.unet(
|
| 602 |
latent_model_input,
|
| 603 |
t,
|
|
@@ -630,27 +586,17 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 630 |
if output_type == "latent":
|
| 631 |
image = latents
|
| 632 |
has_nsfw_concept = None
|
| 633 |
-
elif output_type == "pil":
|
| 634 |
# 9.1 Post-processing
|
| 635 |
image = self.decode_latents(latents)
|
| 636 |
|
| 637 |
# 9.2 Run safety checker
|
| 638 |
-
|
| 639 |
-
image,
|
| 640 |
-
|
| 641 |
-
)
|
| 642 |
-
else:
|
| 643 |
-
has_nsfw_concept = None
|
| 644 |
|
| 645 |
-
# 9.3 Convert to PIL
|
| 646 |
-
image = self.numpy_to_pil(image)
|
| 647 |
-
|
| 648 |
-
# 临时添加的,美肤效果,modelscope接收PIL对象,给一个BGR矩阵
|
| 649 |
-
# 用了一下还是不要了,这个美肤模型失败概率有点大
|
| 650 |
-
if retouching:
|
| 651 |
-
after_retouching = self.skin_retouching(image[0])
|
| 652 |
-
if OutputKeys.OUTPUT_IMG in after_retouching:
|
| 653 |
-
image = [Image.fromarray(cv2.cvtColor(after_retouching[OutputKeys.OUTPUT_IMG], cv2.COLOR_BGR2RGB))]
|
| 654 |
else:
|
| 655 |
# 9.1 Post-processing
|
| 656 |
image = self.decode_latents(latents)
|
|
@@ -660,7 +606,6 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 660 |
image, device, prompt_embeds.dtype
|
| 661 |
)
|
| 662 |
|
| 663 |
-
|
| 664 |
# Offload last model to CPU
|
| 665 |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 666 |
self.final_offload_hook.offload()
|
|
@@ -672,3 +617,10 @@ class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
|
|
| 672 |
images=image, nsfw_content_detected=has_nsfw_concept
|
| 673 |
)
|
| 674 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
from torchvision import transforms
|
| 8 |
+
from insightface.app import FaceAnalysis
|
| 9 |
+
### insight-face installation can be found at https://github.com/deepinsight/insightface
|
| 10 |
from safetensors import safe_open
|
| 11 |
from huggingface_hub.utils import validate_hf_hub_args
|
| 12 |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
|
|
|
| 16 |
from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
|
| 17 |
from functions import ProjPlusModel, masks_for_unique_values
|
| 18 |
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
<<<<<<< HEAD
|
| 21 |
+
#Import BiSeNet's model file
|
| 22 |
import sys
|
| 23 |
sys.path.append("./models/BiSeNet")
|
| 24 |
+
=======
|
| 25 |
+
###TODO Import BiSeNet's model file
|
| 26 |
+
### Model can be import from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file
|
| 27 |
+
### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812
|
| 28 |
+
### Thanks for the open source of face-parsing model.
|
| 29 |
+
sys.path.append("")
|
| 30 |
+
>>>>>>> 6f06fd81331aaed15193b840b17e221773a1abe2
|
| 31 |
from model import BiSeNet
|
| 32 |
|
|
|
|
|
|
|
| 33 |
PipelineImageInput = Union[
|
| 34 |
PIL.Image.Image,
|
| 35 |
torch.FloatTensor,
|
|
|
|
| 48 |
subfolder: str = '',
|
| 49 |
trigger_word_ID: str = '<|image|>',
|
| 50 |
trigger_word_facial: str = '<|facial|>',
|
| 51 |
+
image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K', # TODO Import CLIP pretrained model
|
| 52 |
torch_dtype = torch.float16,
|
| 53 |
num_tokens = 4,
|
| 54 |
lora_rank= 128,
|
| 55 |
**kwargs,
|
| 56 |
):
|
| 57 |
+
self.lora_rank = lora_rank
|
| 58 |
self.torch_dtype = torch_dtype
|
| 59 |
self.num_tokens = num_tokens
|
| 60 |
self.set_ip_adapter()
|
|
|
|
| 73 |
### BiSeNet
|
| 74 |
self.bise_net = BiSeNet(n_classes = 19)
|
| 75 |
self.bise_net.cuda()
|
| 76 |
+
self.bise_net_cp='JackAILab/ConsistentID/face_parsing.pth' # Import BiSeNet model
|
| 77 |
self.bise_net.load_state_dict(torch.load(self.bise_net_cp))
|
| 78 |
self.bise_net.eval()
|
| 79 |
# Colors for all 20 parts
|
|
|
|
| 88 |
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
| 89 |
|
| 90 |
### LLVA Optional
|
| 91 |
+
self.llva_model_path = "" #TODO import llava weights
|
| 92 |
self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth."
|
| 93 |
self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path)
|
| 94 |
|
|
|
|
| 100 |
).to(self.device, dtype=self.torch_dtype)
|
| 101 |
self.FacialEncoder = FacialEncoder(self.image_encoder).to(self.device, dtype=self.torch_dtype)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
| 103 |
# Load the main state dict first.
|
| 104 |
cache_dir = kwargs.pop("cache_dir", None)
|
| 105 |
force_download = kwargs.pop("force_download", False)
|
|
|
|
| 185 |
hidden_states = []
|
| 186 |
uncond_hidden_states = []
|
| 187 |
for facial_clip_image in facial_clip_images:
|
|
|
|
| 188 |
hidden_state = self.image_encoder(facial_clip_image.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2]
|
| 189 |
uncond_hidden_state = self.image_encoder(torch.zeros_like(facial_clip_image, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2]
|
| 190 |
hidden_states.append(hidden_state)
|
|
|
|
| 192 |
multi_facial_embeds = torch.stack(hidden_states)
|
| 193 |
uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)
|
| 194 |
|
| 195 |
+
# condition
|
| 196 |
facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
|
| 197 |
|
| 198 |
# uncondition
|
|
|
|
| 205 |
|
| 206 |
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
|
| 207 |
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
|
|
|
|
| 208 |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
| 209 |
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
| 210 |
+
|
| 211 |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
|
| 212 |
image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
| 213 |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
| 214 |
+
|
|
|
|
| 215 |
return image_prompt_tokens, uncond_image_prompt_embeds
|
| 216 |
|
| 217 |
def set_scale(self, scale):
|
|
|
|
| 222 |
@torch.inference_mode()
|
| 223 |
def get_prepare_faceid(self, face_image):
|
| 224 |
faceid_image = np.array(face_image)
|
|
|
|
| 225 |
faces = self.app.get(faceid_image)
|
| 226 |
if faces==[]:
|
| 227 |
faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
|
| 228 |
+
else:
|
| 229 |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
| 230 |
+
|
| 231 |
return faceid_embeds
|
| 232 |
|
| 233 |
@torch.inference_mode()
|
|
|
|
| 245 |
img = to_tensor(image)
|
| 246 |
img = torch.unsqueeze(img, 0)
|
| 247 |
img = img.float().cuda()
|
| 248 |
+
out = self.bise_net(img)[0]
|
| 249 |
+
parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
|
| 250 |
|
| 251 |
im = np.array(image_resize_PIL)
|
| 252 |
vis_im = im.copy().astype(np.uint8)
|
| 253 |
stride=1
|
| 254 |
+
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
|
|
|
| 255 |
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
| 256 |
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
| 257 |
|
|
|
|
| 261 |
index = np.where(vis_parsing_anno == pi)
|
| 262 |
vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi]
|
| 263 |
|
| 264 |
+
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
| 265 |
+
vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
| 266 |
|
| 267 |
return vis_parsing_anno_color, vis_parsing_anno
|
| 268 |
|
|
|
|
| 290 |
|
| 291 |
return face_caption
|
| 292 |
|
|
|
|
|
|
|
| 293 |
@torch.inference_mode()
|
| 294 |
def get_prepare_facemask(self, input_image_file):
|
| 295 |
+
|
| 296 |
vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file)
|
| 297 |
parsing_mask_list = masks_for_unique_values(vis_parsing_anno)
|
| 298 |
|
| 299 |
key_parsing_mask_list = {}
|
| 300 |
key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
|
|
|
|
|
|
|
| 301 |
processed_keys = set()
|
| 302 |
for key, mask_image in parsing_mask_list.items():
|
| 303 |
if key in key_list:
|
| 304 |
if "_" in key:
|
| 305 |
prefix = key.split("_")[1]
|
| 306 |
+
if prefix in processed_keys:
|
| 307 |
continue
|
| 308 |
else:
|
| 309 |
key_parsing_mask_list[key] = mask_image
|
|
|
|
| 325 |
device: Optional[torch.device] = None,
|
| 326 |
):
|
| 327 |
device = device or self._execution_device
|
| 328 |
+
|
|
|
|
|
|
|
| 329 |
face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list)
|
| 330 |
|
|
|
|
| 331 |
prompt_face = prompt + "Detail:" + face_caption_align
|
| 332 |
|
| 333 |
+
max_text_length=330
|
| 334 |
if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, padding="max_length",truncation=False,return_tensors="pt").input_ids[0])!=77:
|
| 335 |
prompt_face = "Detail:" + face_caption_align + " Caption:" + prompt
|
| 336 |
|
|
|
|
| 340 |
|
| 341 |
prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "")
|
| 342 |
tokenizer = self.tokenizer
|
|
|
|
| 343 |
facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
|
| 344 |
+
image_token_id = None
|
| 345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends(
|
| 347 |
prompt_face, image_token_id, facial_token_id, tokenizer)
|
| 348 |
+
|
| 349 |
image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx(
|
| 350 |
image_token_mask, facial_token_mask, num_id_images, max_num_facials )
|
| 351 |
|
|
|
|
| 360 |
clip_image_processor = CLIPImageProcessor()
|
| 361 |
|
| 362 |
num_facial_part = len(key_parsing_mask_list)
|
| 363 |
+
|
| 364 |
for key in key_parsing_mask_list:
|
| 365 |
key_mask=key_parsing_mask_list[key]
|
| 366 |
facial_mask.append(transform_mask(key_mask))
|
|
|
|
| 367 |
key_mask_raw_image = fetch_mask_raw_image(input_image_file,key_mask)
|
| 368 |
parsing_clip_image = clip_image_processor(images=key_mask_raw_image, return_tensors="pt").pixel_values
|
| 369 |
facial_clip_image.append(parsing_clip_image)
|
| 370 |
|
| 371 |
padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
|
| 372 |
padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))
|
| 373 |
+
|
| 374 |
if num_facial_part < max_num_facials:
|
| 375 |
facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
|
| 376 |
facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)]
|
|
|
|
| 378 |
facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0)
|
| 379 |
facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1)
|
| 380 |
|
| 381 |
+
return facial_clip_image, facial_mask
|
| 382 |
|
|
|
|
| 383 |
@torch.no_grad()
|
| 384 |
def __call__(
|
| 385 |
self,
|
|
|
|
| 403 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 404 |
callback_steps: int = 1,
|
| 405 |
input_id_images: PipelineImageInput = None,
|
|
|
|
| 406 |
start_merge_step: int = 0,
|
| 407 |
class_tokens_mask: Optional[torch.LongTensor] = None,
|
| 408 |
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
| 409 |
):
|
| 410 |
# 0. Default height and width to unet
|
| 411 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
| 431 |
if prompt is not None and isinstance(prompt, str):
|
| 432 |
batch_size = 1
|
| 433 |
elif prompt is not None and isinstance(prompt, list):
|
| 434 |
+
batch_size = len(prompt)
|
| 435 |
else:
|
| 436 |
batch_size = prompt_embeds.shape[0]
|
| 437 |
|
|
|
|
| 439 |
do_classifier_free_guidance = guidance_scale >= 1.0
|
| 440 |
input_image_file = input_id_images[0]
|
| 441 |
|
| 442 |
+
faceid_embeds = self.get_prepare_faceid(face_image=input_image_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
face_caption = self.get_prepare_llva_caption(input_image_file)
|
|
|
|
| 444 |
key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file)
|
| 445 |
|
|
|
|
| 446 |
assert do_classifier_free_guidance
|
| 447 |
|
| 448 |
# 3. Encode input prompt
|
| 449 |
num_id_images = len(input_id_images)
|
| 450 |
|
| 451 |
(
|
| 452 |
+
prompt_text_only,
|
| 453 |
+
clean_input_id,
|
| 454 |
+
key_parsing_mask_list_align,
|
| 455 |
+
facial_token_mask,
|
| 456 |
+
facial_token_idx,
|
| 457 |
facial_token_idx_mask,
|
| 458 |
) = self.encode_prompt_with_trigger_word(
|
| 459 |
prompt = prompt,
|
| 460 |
+
face_caption = face_caption,
|
| 461 |
+
# prompt_2=None,
|
| 462 |
key_parsing_mask_list=key_parsing_mask_list,
|
| 463 |
device=device,
|
| 464 |
max_num_facials = 5,
|
|
|
|
| 470 |
|
| 471 |
# 4. Encode input prompt without the trigger word for delayed conditioning
|
| 472 |
encoder_hidden_states = self.text_encoder(clean_input_id.to(device))[0]
|
| 473 |
+
|
|
|
|
| 474 |
prompt_embeds = self._encode_prompt(
|
| 475 |
prompt_text_only,
|
| 476 |
device=device,
|
| 477 |
num_images_per_prompt=num_images_per_prompt,
|
| 478 |
do_classifier_free_guidance=True,
|
| 479 |
+
negative_prompt=negative_prompt,
|
| 480 |
+
)
|
| 481 |
negative_encoder_hidden_states_text_only = prompt_embeds[0:num_images_per_prompt]
|
| 482 |
encoder_hidden_states_text_only = prompt_embeds[num_images_per_prompt:]
|
| 483 |
|
| 484 |
# 5. Prepare the input ID images
|
| 485 |
+
prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=1.0, shortcut=False)
|
| 486 |
+
|
|
|
|
|
|
|
| 487 |
facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=512, max_num_facials=5)
|
|
|
|
| 488 |
facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype)
|
|
|
|
| 489 |
facial_token_mask = facial_token_mask.to(device)
|
| 490 |
facial_token_idx_mask = facial_token_idx_mask.to(device)
|
| 491 |
negative_encoder_hidden_states = negative_encoder_hidden_states_text_only
|
| 492 |
|
| 493 |
cross_attention_kwargs = {}
|
| 494 |
|
| 495 |
+
# 6. Get the update text embedding
|
| 496 |
prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_encoder_hidden_states, \
|
| 497 |
facial_clip_images, facial_token_mask, facial_token_idx_mask)
|
| 498 |
+
|
|
|
|
| 499 |
prompt_embeds = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1)
|
| 500 |
negative_prompt_embeds = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1)
|
| 501 |
+
|
| 502 |
prompt_embeds = self._encode_prompt(
|
| 503 |
prompt,
|
| 504 |
device,
|
|
|
|
| 508 |
prompt_embeds=prompt_embeds,
|
| 509 |
negative_prompt_embeds=negative_prompt_embeds,
|
| 510 |
)
|
|
|
|
|
|
|
| 511 |
prompt_embeds_text_only = torch.cat([encoder_hidden_states_text_only, prompt_tokens_faceid], dim=1)
|
| 512 |
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds_text_only], dim=0)
|
| 513 |
|
|
|
|
| 530 |
|
| 531 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 532 |
(
|
| 533 |
+
null_prompt_embeds,
|
| 534 |
+
augmented_prompt_embeds,
|
| 535 |
+
text_prompt_embeds,
|
| 536 |
) = prompt_embeds.chunk(3)
|
| 537 |
|
| 538 |
# 9. Denoising loop
|
|
|
|
| 553 |
[null_prompt_embeds, augmented_prompt_embeds], dim=0
|
| 554 |
)
|
| 555 |
|
| 556 |
+
# predict the noise residual
|
| 557 |
noise_pred = self.unet(
|
| 558 |
latent_model_input,
|
| 559 |
t,
|
|
|
|
| 586 |
if output_type == "latent":
|
| 587 |
image = latents
|
| 588 |
has_nsfw_concept = None
|
| 589 |
+
elif output_type == "pil":
|
| 590 |
# 9.1 Post-processing
|
| 591 |
image = self.decode_latents(latents)
|
| 592 |
|
| 593 |
# 9.2 Run safety checker
|
| 594 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
| 595 |
+
image, device, prompt_embeds.dtype
|
| 596 |
+
)
|
|
|
|
|
|
|
|
|
|
| 597 |
|
| 598 |
+
# 9.3 Convert to PIL
|
| 599 |
+
image = self.numpy_to_pil(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 600 |
else:
|
| 601 |
# 9.1 Post-processing
|
| 602 |
image = self.decode_latents(latents)
|
|
|
|
| 606 |
image, device, prompt_embeds.dtype
|
| 607 |
)
|
| 608 |
|
|
|
|
| 609 |
# Offload last model to CPU
|
| 610 |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 611 |
self.final_offload_hook.offload()
|
|
|
|
| 617 |
images=image, nsfw_content_detected=has_nsfw_concept
|
| 618 |
)
|
| 619 |
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
|