Spaces:
Runtime error
Runtime error
| from typing import * | |
| import torch | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| from .common import Grader | |
| model_name = "KevSun/Engessay_grading_ML" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| class Engessay_grading_ML(Grader): | |
| def info(self) -> str: | |
| return "[KevSun/Engessay_grading_ML](https://huggingface.co/KevSun/Engessay_grading_ML)" | |
| def grade(self, question: str, answer: str) -> Tuple[float, str]: | |
| text = f"{question} {answer}" | |
| inputs = tokenizer(text, return_tensors="pt") | |
| outputs = model(**inputs) | |
| predictions = outputs.logits.squeeze() | |
| predicted_scores = predictions.numpy() | |
| scaled_scores = 2.25 * predicted_scores - 1.25 | |
| rounded_scores = [round(score * 2) / 2 for score in scaled_scores] | |
| labels = [ | |
| "cohesion", | |
| "syntax", | |
| "vocabulary", | |
| "phraseology", | |
| "grammar", | |
| "conventions", | |
| ] | |
| overall_score = round(sum(rounded_scores) / len(rounded_scores) * 2) / 2 | |
| comment = "" | |
| for label, score in zip(labels, rounded_scores): | |
| comment += f"{label}: {score}\n" | |
| return overall_score, comment | |