Spaces:
Runtime error
Runtime error
| from typing import * | |
| import torch | |
| import numpy as np | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| from .common import Grader | |
| model_name = "JacobLinCool/IELTS_essay_scoring_safetensors" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| class IELTS_essay_scoring(Grader): | |
| def info(self) -> str: | |
| return "Safetensors version of [KevSun/IELTS_essay_scoring](https://huggingface.co/KevSun/IELTS_essay_scoring)" | |
| def grade(self, question: str, answer: str) -> Tuple[float, str]: | |
| text = f"{question} {answer}" | |
| inputs = tokenizer( | |
| text, return_tensors="pt", padding=True, truncation=True, max_length=512 | |
| ) | |
| outputs = model(**inputs) | |
| predictions = outputs.logits.squeeze() | |
| predicted_scores = predictions.numpy() | |
| normalized_scores = (predicted_scores / predicted_scores.max()) * 9 | |
| rounded_scores = np.round(normalized_scores * 2) / 2 | |
| labels = [ | |
| "Task Achievement", | |
| "Coherence and Cohesion", | |
| "Vocabulary", | |
| "Grammar", | |
| "Overall", | |
| ] | |
| overall_score = float(rounded_scores[-1]) | |
| comment = "" | |
| for label, score in zip(labels, rounded_scores): | |
| comment += f"{label}: {score}\n" | |
| return overall_score, comment | |