Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from transformers import (
|
| 3 |
+
AutoImageProcessor,
|
| 4 |
+
AutoModelForCausalLM,
|
| 5 |
+
)
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
from accelerate import Accelerator
|
| 9 |
+
import numpy as np
|
| 10 |
+
import cv2
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import zipfile
|
| 13 |
+
import io
|
| 14 |
+
import tempfile
|
| 15 |
+
import os
|
| 16 |
+
|
| 17 |
+
DEVICE = Accelerator().device
|
| 18 |
+
MODEL_NAME = "qihoo360/fg-clip2-so400m"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True).to(
|
| 22 |
+
DEVICE
|
| 23 |
+
)
|
| 24 |
+
image_processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def determine_max_value(image):
|
| 28 |
+
"""Determine max_num_patches based on image size."""
|
| 29 |
+
w, h = image.size
|
| 30 |
+
max_val = (w // 16) * (h // 16)
|
| 31 |
+
if max_val > 784:
|
| 32 |
+
return 1024
|
| 33 |
+
elif max_val > 576:
|
| 34 |
+
return 784
|
| 35 |
+
elif max_val > 256:
|
| 36 |
+
return 576
|
| 37 |
+
elif max_val > 128:
|
| 38 |
+
return 256
|
| 39 |
+
else:
|
| 40 |
+
return 128
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@spaces.GPU
|
| 44 |
+
def generate_image_embeddings(zip_file):
|
| 45 |
+
"""
|
| 46 |
+
Generate embeddings from images in a zip file.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
zip_file: Uploaded zip file containing images
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
Tuple of (embeddings as numpy file, status message)
|
| 53 |
+
"""
|
| 54 |
+
try:
|
| 55 |
+
# Extract images from zip
|
| 56 |
+
images = []
|
| 57 |
+
with zipfile.ZipFile(zip_file.name, "r") as zip_ref:
|
| 58 |
+
for file_info in zip_ref.filelist:
|
| 59 |
+
if file_info.filename.lower().endswith(
|
| 60 |
+
(".png", ".jpg", ".jpeg", ".bmp", ".webp")
|
| 61 |
+
):
|
| 62 |
+
with zip_ref.open(file_info) as img_file:
|
| 63 |
+
img = Image.open(io.BytesIO(img_file.read())).convert("RGB")
|
| 64 |
+
images.append(img)
|
| 65 |
+
|
| 66 |
+
if len(images) == 0:
|
| 67 |
+
return None, "β No valid images found in the zip file"
|
| 68 |
+
|
| 69 |
+
# Generate embeddings
|
| 70 |
+
embeddings = []
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
for i, image in enumerate(images):
|
| 73 |
+
image_input = image_processor(
|
| 74 |
+
images=image,
|
| 75 |
+
max_num_patches=determine_max_value(image),
|
| 76 |
+
return_tensors="pt",
|
| 77 |
+
).to(DEVICE)
|
| 78 |
+
image_feature = model.get_image_features(**image_input)
|
| 79 |
+
|
| 80 |
+
# Normalize the embedding
|
| 81 |
+
normalized_features = image_feature / image_feature.norm(
|
| 82 |
+
dim=-1, keepdim=True
|
| 83 |
+
)
|
| 84 |
+
embeddings.append(normalized_features.cpu().numpy())
|
| 85 |
+
|
| 86 |
+
embeddings = np.vstack(embeddings)
|
| 87 |
+
|
| 88 |
+
# Save embeddings to a temporary file
|
| 89 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".npy") as tmp:
|
| 90 |
+
np.save(tmp.name, embeddings)
|
| 91 |
+
output_path = tmp.name
|
| 92 |
+
|
| 93 |
+
message = f"β
Successfully generated embeddings for {len(images)} images\nShape: {embeddings.shape}"
|
| 94 |
+
return output_path, message
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
return None, f"β Error: {str(e)}"
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def extract_frames(video_path: str, fps: int = 4):
|
| 101 |
+
"""
|
| 102 |
+
Extract frames from video at specified fps.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
video_path: Path to the video file
|
| 106 |
+
fps: Frames per second to sample
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
List of PIL Images
|
| 110 |
+
"""
|
| 111 |
+
cap = cv2.VideoCapture(video_path)
|
| 112 |
+
video_fps = cap.get(cv2.CAP_PROP_FPS)
|
| 113 |
+
frame_interval = int(round(video_fps) / fps)
|
| 114 |
+
|
| 115 |
+
frames = []
|
| 116 |
+
frame_count = 0
|
| 117 |
+
|
| 118 |
+
while True:
|
| 119 |
+
ret, frame = cap.read()
|
| 120 |
+
if not ret:
|
| 121 |
+
break
|
| 122 |
+
|
| 123 |
+
if frame_count % frame_interval == 0:
|
| 124 |
+
# Convert BGR to RGB
|
| 125 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 126 |
+
pil_image = Image.fromarray(frame_rgb)
|
| 127 |
+
frames.append(pil_image)
|
| 128 |
+
|
| 129 |
+
frame_count += 1
|
| 130 |
+
|
| 131 |
+
cap.release()
|
| 132 |
+
return frames
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
@spaces.GPU
|
| 136 |
+
def generate_video_embeddings(video_file, fps):
|
| 137 |
+
"""
|
| 138 |
+
Generate embeddings from video frames.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
video_file: Uploaded video file
|
| 142 |
+
fps: Frames per second to extract
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
Tuple of (embeddings as numpy file, status message)
|
| 146 |
+
"""
|
| 147 |
+
try:
|
| 148 |
+
# Extract frames
|
| 149 |
+
frames = extract_frames(video_file.name, fps)
|
| 150 |
+
|
| 151 |
+
if len(frames) == 0:
|
| 152 |
+
return None, "β No frames could be extracted from the video"
|
| 153 |
+
|
| 154 |
+
# Generate embeddings
|
| 155 |
+
embeddings = []
|
| 156 |
+
with torch.no_grad():
|
| 157 |
+
for i, frame in enumerate(frames):
|
| 158 |
+
image_input = image_processor(
|
| 159 |
+
images=frame,
|
| 160 |
+
max_num_patches=determine_max_value(frame),
|
| 161 |
+
return_tensors="pt",
|
| 162 |
+
).to(DEVICE)
|
| 163 |
+
image_feature = model.get_image_features(**image_input)
|
| 164 |
+
|
| 165 |
+
# Normalize the embedding
|
| 166 |
+
normalized_features = image_feature / image_feature.norm(
|
| 167 |
+
dim=-1, keepdim=True
|
| 168 |
+
)
|
| 169 |
+
embeddings.append(normalized_features.cpu().numpy())
|
| 170 |
+
|
| 171 |
+
embeddings = np.vstack(embeddings)
|
| 172 |
+
|
| 173 |
+
# Save embeddings to a temporary file
|
| 174 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".npy") as tmp:
|
| 175 |
+
np.save(tmp.name, embeddings)
|
| 176 |
+
output_path = tmp.name
|
| 177 |
+
|
| 178 |
+
message = f"β
Successfully generated embeddings for {len(frames)} frames (extracted at {fps} fps)\nShape: {embeddings.shape}"
|
| 179 |
+
return output_path, message
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
return None, f"β Error: {str(e)}"
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
# Create Gradio interface
|
| 186 |
+
with gr.Blocks(title="Video & Image Embedding Generator") as demo:
|
| 187 |
+
gr.Markdown("# π¬ Video & Image Embedding Generator")
|
| 188 |
+
gr.Markdown(f"Generate embeddings using **{MODEL_NAME}** model")
|
| 189 |
+
|
| 190 |
+
with gr.Tab("π¦ Images from ZIP"):
|
| 191 |
+
gr.Markdown("Upload a ZIP file containing images to generate embeddings")
|
| 192 |
+
with gr.Row():
|
| 193 |
+
with gr.Column():
|
| 194 |
+
zip_input = gr.File(label="Upload ZIP file", file_types=[".zip"])
|
| 195 |
+
img_submit_btn = gr.Button("Generate Embeddings", variant="primary")
|
| 196 |
+
with gr.Column():
|
| 197 |
+
img_output = gr.File(label="Download Embeddings (.npy)")
|
| 198 |
+
img_status = gr.Textbox(label="Status", lines=3)
|
| 199 |
+
|
| 200 |
+
img_submit_btn.click(
|
| 201 |
+
fn=generate_image_embeddings,
|
| 202 |
+
inputs=[zip_input],
|
| 203 |
+
outputs=[img_output, img_status],
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
with gr.Tab("π₯ Video Frames"):
|
| 207 |
+
gr.Markdown(
|
| 208 |
+
"Upload a video and specify FPS to extract frames and generate embeddings"
|
| 209 |
+
)
|
| 210 |
+
with gr.Row():
|
| 211 |
+
with gr.Column():
|
| 212 |
+
video_input = gr.Video(label="Upload Video")
|
| 213 |
+
fps_input = gr.Slider(
|
| 214 |
+
minimum=1,
|
| 215 |
+
maximum=30,
|
| 216 |
+
value=4,
|
| 217 |
+
step=1,
|
| 218 |
+
label="Frames per Second (FPS)",
|
| 219 |
+
)
|
| 220 |
+
vid_submit_btn = gr.Button("Generate Embeddings", variant="primary")
|
| 221 |
+
with gr.Column():
|
| 222 |
+
vid_output = gr.File(label="Download Embeddings (.npy)")
|
| 223 |
+
vid_status = gr.Textbox(label="Status", lines=3)
|
| 224 |
+
|
| 225 |
+
vid_submit_btn.click(
|
| 226 |
+
fn=generate_video_embeddings,
|
| 227 |
+
inputs=[video_input, fps_input],
|
| 228 |
+
outputs=[vid_output, vid_status],
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
gr.Markdown(
|
| 232 |
+
"""
|
| 233 |
+
### π Notes:
|
| 234 |
+
- Images in ZIP: Supports PNG, JPG, JPEG, BMP, WEBP formats
|
| 235 |
+
- Video: Supports common video formats (MP4, AVI, MOV, etc.)
|
| 236 |
+
- Output: NumPy array file (.npy) containing normalized embeddings
|
| 237 |
+
- Load embeddings: `embeddings = np.load('embeddings.npy')`
|
| 238 |
+
"""
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
if __name__ == "__main__":
|
| 243 |
+
demo.launch()
|