Spaces:
Running
Running
Upload 2 files
Browse files- app.py +60 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import SamModel, SamProcessor
|
| 6 |
+
|
| 7 |
+
# Download model automatically (no .pth needed)
|
| 8 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 9 |
+
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
| 10 |
+
|
| 11 |
+
def auto_dimension(image, height, width):
|
| 12 |
+
image_np = np.array(image)
|
| 13 |
+
|
| 14 |
+
# Prepare for SAM
|
| 15 |
+
inputs = processor(image, input_points=None, return_tensors="pt")
|
| 16 |
+
|
| 17 |
+
# Run SAM
|
| 18 |
+
outputs = model(**inputs)
|
| 19 |
+
masks = processor.post_process_masks(
|
| 20 |
+
outputs.pred_masks,
|
| 21 |
+
inputs["original_sizes"],
|
| 22 |
+
inputs["reshaped_input_sizes"]
|
| 23 |
+
)
|
| 24 |
+
mask = masks[0][0].numpy().astype(np.uint8) * 255
|
| 25 |
+
|
| 26 |
+
# Find largest contour
|
| 27 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 28 |
+
cnt = max(contours, key=cv2.contourArea)
|
| 29 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
| 30 |
+
|
| 31 |
+
# Scale using real height
|
| 32 |
+
scale = height / h
|
| 33 |
+
computed_width = w * scale
|
| 34 |
+
|
| 35 |
+
output = image_np.copy()
|
| 36 |
+
|
| 37 |
+
# Draw dimension lines
|
| 38 |
+
def draw_dim(pt1, pt2, text):
|
| 39 |
+
cv2.line(output, pt1, pt2, (0, 255, 0), 3)
|
| 40 |
+
cv2.putText(output, text, (pt1[0]+10, pt1[1]-10),
|
| 41 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
|
| 42 |
+
|
| 43 |
+
draw_dim((x-40, y), (x-40, y+h), f"H: {height} cm")
|
| 44 |
+
draw_dim((x, y+h+40), (x+w, y+h+40), f"W: {width} cm")
|
| 45 |
+
|
| 46 |
+
return Image.fromarray(output)
|
| 47 |
+
|
| 48 |
+
iface = gr.Interface(
|
| 49 |
+
fn=auto_dimension,
|
| 50 |
+
inputs=[
|
| 51 |
+
gr.Image(type="pil"),
|
| 52 |
+
gr.Number(label="Height (cm)"),
|
| 53 |
+
gr.Number(label="Width (cm)")
|
| 54 |
+
],
|
| 55 |
+
outputs=gr.Image(),
|
| 56 |
+
title="Automatic Dimension Overlay Tool",
|
| 57 |
+
description="Upload an image → enter real dimensions → AI adds dimension graphics automatically."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
opencv-python-headless
|
| 4 |
+
numpy
|
| 5 |
+
Pillow
|
| 6 |
+
gradio
|