Update classifier.py
Browse files- classifier.py +18 -8
classifier.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
# classifier.py
|
| 2 |
import torch
|
| 3 |
-
from
|
| 4 |
from paraphraser import paraphrase_comment
|
| 5 |
-
from metrics import compute_semantic_similarity, compute_emotion_shift, compute_empathy_score
|
| 6 |
|
| 7 |
def classify_toxic_comment(comment):
|
| 8 |
"""
|
|
@@ -11,14 +11,18 @@ def classify_toxic_comment(comment):
|
|
| 11 |
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
| 12 |
"""
|
| 13 |
if not comment.strip():
|
| 14 |
-
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Tokenize the input comment
|
| 17 |
-
inputs =
|
| 18 |
|
| 19 |
# Run inference
|
| 20 |
with torch.no_grad():
|
| 21 |
-
outputs =
|
| 22 |
logits = outputs.logits
|
| 23 |
|
| 24 |
# Get the predicted class (0 = non-toxic, 1 = toxic)
|
|
@@ -47,15 +51,18 @@ def classify_toxic_comment(comment):
|
|
| 47 |
paraphrased_emotion = None
|
| 48 |
emotion_shift_positive = None
|
| 49 |
empathy_score = None
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
if label == "Toxic":
|
| 52 |
# Paraphrase the comment
|
| 53 |
paraphrased_comment = paraphrase_comment(comment)
|
| 54 |
|
| 55 |
# Re-evaluate the paraphrased comment
|
| 56 |
-
paraphrased_inputs =
|
| 57 |
with torch.no_grad():
|
| 58 |
-
paraphrased_outputs =
|
| 59 |
paraphrased_logits = paraphrased_outputs.logits
|
| 60 |
|
| 61 |
paraphrased_predicted_class = torch.argmax(paraphrased_logits, dim=1).item()
|
|
@@ -71,11 +78,14 @@ def classify_toxic_comment(comment):
|
|
| 71 |
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment)
|
| 72 |
original_emotion, paraphrased_emotion, emotion_shift_positive = compute_emotion_shift(comment, paraphrased_comment)
|
| 73 |
empathy_score = compute_empathy_score(paraphrased_comment)
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
return (
|
| 76 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
| 77 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
| 78 |
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 79 |
semantic_similarity, f"Original: {original_emotion}, Paraphrased: {paraphrased_emotion}, Positive Shift: {emotion_shift_positive}" if original_emotion else None,
|
| 80 |
-
empathy_score
|
| 81 |
)
|
|
|
|
| 1 |
# classifier.py
|
| 2 |
import torch
|
| 3 |
+
from model.classifier import classifier_model
|
| 4 |
from paraphraser import paraphrase_comment
|
| 5 |
+
from metrics import compute_semantic_similarity, compute_emotion_shift, compute_empathy_score, compute_bleu_score, compute_rouge_score, compute_entailment_score
|
| 6 |
|
| 7 |
def classify_toxic_comment(comment):
|
| 8 |
"""
|
|
|
|
| 11 |
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
| 12 |
"""
|
| 13 |
if not comment.strip():
|
| 14 |
+
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
| 15 |
+
|
| 16 |
+
# Access the model and tokenizer
|
| 17 |
+
model = classifier_model.model
|
| 18 |
+
tokenizer = classifier_model.tokenizer
|
| 19 |
|
| 20 |
# Tokenize the input comment
|
| 21 |
+
inputs = tokenizer(comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 22 |
|
| 23 |
# Run inference
|
| 24 |
with torch.no_grad():
|
| 25 |
+
outputs = model(**inputs)
|
| 26 |
logits = outputs.logits
|
| 27 |
|
| 28 |
# Get the predicted class (0 = non-toxic, 1 = toxic)
|
|
|
|
| 51 |
paraphrased_emotion = None
|
| 52 |
emotion_shift_positive = None
|
| 53 |
empathy_score = None
|
| 54 |
+
bleu_score = None
|
| 55 |
+
rouge_scores = None
|
| 56 |
+
entailment_score = None
|
| 57 |
|
| 58 |
if label == "Toxic":
|
| 59 |
# Paraphrase the comment
|
| 60 |
paraphrased_comment = paraphrase_comment(comment)
|
| 61 |
|
| 62 |
# Re-evaluate the paraphrased comment
|
| 63 |
+
paraphrased_inputs = tokenizer(paraphrased_comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 64 |
with torch.no_grad():
|
| 65 |
+
paraphrased_outputs = model(**paraphrased_inputs)
|
| 66 |
paraphrased_logits = paraphrased_outputs.logits
|
| 67 |
|
| 68 |
paraphrased_predicted_class = torch.argmax(paraphrased_logits, dim=1).item()
|
|
|
|
| 78 |
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment)
|
| 79 |
original_emotion, paraphrased_emotion, emotion_shift_positive = compute_emotion_shift(comment, paraphrased_comment)
|
| 80 |
empathy_score = compute_empathy_score(paraphrased_comment)
|
| 81 |
+
bleu_score = compute_bleu_score(comment, paraphrased_comment)
|
| 82 |
+
rouge_scores = compute_rouge_score(comment, paraphrased_comment)
|
| 83 |
+
entailment_score = compute_entailment_score(comment, paraphrased_comment)
|
| 84 |
|
| 85 |
return (
|
| 86 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
| 87 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
| 88 |
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 89 |
semantic_similarity, f"Original: {original_emotion}, Paraphrased: {paraphrased_emotion}, Positive Shift: {emotion_shift_positive}" if original_emotion else None,
|
| 90 |
+
empathy_score, bleu_score, rouge_scores, entailment_score
|
| 91 |
)
|