Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ from classifier import classify_toxic_comment
|
|
| 4 |
|
| 5 |
# Clear function for resetting the UI
|
| 6 |
def clear_inputs():
|
| 7 |
-
return "", 0, "", [], "", ""
|
| 8 |
|
| 9 |
# Custom CSS for styling
|
| 10 |
custom_css = """
|
|
@@ -75,6 +75,23 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 75 |
label_display = gr.HTML()
|
| 76 |
threshold_display = gr.HTML()
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
with gr.Accordion("Prediction History", open=False):
|
| 79 |
history_output = gr.JSON(label="Previous Predictions")
|
| 80 |
|
|
@@ -90,31 +107,75 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 90 |
def handle_classification(comment, history):
|
| 91 |
if history is None:
|
| 92 |
history = []
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
history.append({
|
| 95 |
"comment": comment,
|
| 96 |
"prediction": prediction,
|
| 97 |
"confidence": confidence,
|
| 98 |
"toxicity_score": toxicity_score,
|
| 99 |
-
"bias_score": bias_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
})
|
|
|
|
| 101 |
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
|
| 102 |
threshold_color = "green" if confidence >= 0.7 else "orange"
|
| 103 |
toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
|
| 104 |
bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
def handle_feedback(feedback, comment):
|
| 108 |
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
|
| 109 |
|
| 110 |
submit_btn.click(
|
| 111 |
-
fn=lambda: ("Classifying...", 0, "", None, "", "", "Calculating...", "Calculating..."), # Show loading state
|
| 112 |
inputs=[],
|
| 113 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
).then(
|
| 115 |
fn=handle_classification,
|
| 116 |
inputs=[comment_input, history_output],
|
| 117 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
).then(
|
| 119 |
fn=lambda prediction, confidence, color: f"<span style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>",
|
| 120 |
inputs=[prediction_output, confidence_output, label_display],
|
|
@@ -134,7 +195,12 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
| 134 |
clear_btn.click(
|
| 135 |
fn=clear_inputs,
|
| 136 |
inputs=[],
|
| 137 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
)
|
| 139 |
|
| 140 |
gr.Markdown(
|
|
|
|
| 4 |
|
| 5 |
# Clear function for resetting the UI
|
| 6 |
def clear_inputs():
|
| 7 |
+
return "", 0, "", [], "", "", "", "", 0, "", "", "", "", ""
|
| 8 |
|
| 9 |
# Custom CSS for styling
|
| 10 |
custom_css = """
|
|
|
|
| 75 |
label_display = gr.HTML()
|
| 76 |
threshold_display = gr.HTML()
|
| 77 |
|
| 78 |
+
with gr.Accordion("Paraphrased Output (if Toxic)", open=False):
|
| 79 |
+
paraphrased_comment_output = gr.Textbox(label="Paraphrased Comment", placeholder="Paraphrased comment will appear here if the input is toxic...")
|
| 80 |
+
paraphrased_prediction_output = gr.Textbox(label="Paraphrased Prediction", placeholder="Prediction will appear here...")
|
| 81 |
+
paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
|
| 82 |
+
paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
|
| 83 |
+
paraphrased_confidence_output = gr.Slider(
|
| 84 |
+
label="Paraphrased Confidence",
|
| 85 |
+
minimum=0,
|
| 86 |
+
maximum=1,
|
| 87 |
+
value=0,
|
| 88 |
+
interactive=False
|
| 89 |
+
)
|
| 90 |
+
paraphrased_label_display = gr.HTML()
|
| 91 |
+
semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
|
| 92 |
+
emotion_shift_output = gr.Textbox(label="Emotion Shift", placeholder="Emotion shift will appear here...")
|
| 93 |
+
empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
|
| 94 |
+
|
| 95 |
with gr.Accordion("Prediction History", open=False):
|
| 96 |
history_output = gr.JSON(label="Previous Predictions")
|
| 97 |
|
|
|
|
| 107 |
def handle_classification(comment, history):
|
| 108 |
if history is None:
|
| 109 |
history = []
|
| 110 |
+
(
|
| 111 |
+
prediction, confidence, color, toxicity_score, bias_score,
|
| 112 |
+
paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
|
| 113 |
+
paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 114 |
+
semantic_similarity, emotion_shift, empathy_score
|
| 115 |
+
) = classify_toxic_comment(comment)
|
| 116 |
+
|
| 117 |
history.append({
|
| 118 |
"comment": comment,
|
| 119 |
"prediction": prediction,
|
| 120 |
"confidence": confidence,
|
| 121 |
"toxicity_score": toxicity_score,
|
| 122 |
+
"bias_score": bias_score,
|
| 123 |
+
"paraphrased_comment": paraphrased_comment,
|
| 124 |
+
"paraphrased_prediction": paraphrased_prediction,
|
| 125 |
+
"paraphrased_confidence": paraphrased_confidence,
|
| 126 |
+
"paraphrased_toxicity_score": paraphrased_toxicity_score,
|
| 127 |
+
"paraphrased_bias_score": paraphrased_bias_score,
|
| 128 |
+
"semantic_similarity": semantic_similarity,
|
| 129 |
+
"emotion_shift": emotion_shift,
|
| 130 |
+
"empathy_score": empathy_score
|
| 131 |
})
|
| 132 |
+
|
| 133 |
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
|
| 134 |
threshold_color = "green" if confidence >= 0.7 else "orange"
|
| 135 |
toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
|
| 136 |
bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
|
| 137 |
+
|
| 138 |
+
paraphrased_comment_display = paraphrased_comment if paraphrased_comment else "N/A (Comment was non-toxic)"
|
| 139 |
+
paraphrased_prediction_display = paraphrased_prediction if paraphrased_prediction else "N/A"
|
| 140 |
+
paraphrased_confidence_display = paraphrased_confidence if paraphrased_confidence else 0
|
| 141 |
+
paraphrased_toxicity_display = f"{paraphrased_toxicity_score} (Scale: 0 to 1, lower is less toxic)" if paraphrased_toxicity_score is not None else "N/A"
|
| 142 |
+
paraphrased_bias_display = f"{paraphrased_bias_score} (Scale: 0 to 1, lower indicates less bias)" if paraphrased_bias_score is not None else "N/A"
|
| 143 |
+
paraphrased_label_html = f"<span style='color: {paraphrased_color}; font-size: 20px; font-weight: bold;'>{paraphrased_prediction}</span>" if paraphrased_prediction else ""
|
| 144 |
+
semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
|
| 145 |
+
emotion_shift_display = emotion_shift if emotion_shift else "N/A"
|
| 146 |
+
empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
|
| 147 |
+
|
| 148 |
+
return (
|
| 149 |
+
prediction, confidence, color, history, threshold_message, threshold_color,
|
| 150 |
+
toxicity_display, bias_display,
|
| 151 |
+
paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
|
| 152 |
+
paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
|
| 153 |
+
semantic_similarity_display, emotion_shift_display, empathy_score_display
|
| 154 |
+
)
|
| 155 |
|
| 156 |
def handle_feedback(feedback, comment):
|
| 157 |
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
|
| 158 |
|
| 159 |
submit_btn.click(
|
| 160 |
+
fn=lambda: ("Classifying...", 0, "", None, "", "", "Calculating...", "Calculating...", "Paraphrasing...", "Calculating...", 0, "Calculating...", "Calculating...", "", "Calculating...", "Calculating...", "Calculating..."), # Show loading state
|
| 161 |
inputs=[],
|
| 162 |
+
outputs=[
|
| 163 |
+
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
|
| 164 |
+
toxicity_output, bias_output,
|
| 165 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 166 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 167 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output
|
| 168 |
+
]
|
| 169 |
).then(
|
| 170 |
fn=handle_classification,
|
| 171 |
inputs=[comment_input, history_output],
|
| 172 |
+
outputs=[
|
| 173 |
+
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
|
| 174 |
+
toxicity_output, bias_output,
|
| 175 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 176 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 177 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output
|
| 178 |
+
]
|
| 179 |
).then(
|
| 180 |
fn=lambda prediction, confidence, color: f"<span style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>",
|
| 181 |
inputs=[prediction_output, confidence_output, label_display],
|
|
|
|
| 195 |
clear_btn.click(
|
| 196 |
fn=clear_inputs,
|
| 197 |
inputs=[],
|
| 198 |
+
outputs=[
|
| 199 |
+
comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
|
| 200 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 201 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 202 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output
|
| 203 |
+
]
|
| 204 |
)
|
| 205 |
|
| 206 |
gr.Markdown(
|