Update metrics.py
Browse files- metrics.py +1 -14
metrics.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# metrics.py
|
| 2 |
import nltk
|
| 3 |
-
from nltk.translate.bleu_score import sentence_bleu
|
| 4 |
from rouge_score import rouge_scorer
|
| 5 |
from model_loader import metrics_models
|
| 6 |
|
|
@@ -37,19 +37,6 @@ def compute_empathy_score(paraphrased):
|
|
| 37 |
print(f"Error computing empathy score: {str(e)}")
|
| 38 |
return None
|
| 39 |
|
| 40 |
-
def compute_bleu_score(original, paraphrased):
|
| 41 |
-
"""
|
| 42 |
-
Compute the BLEU score between the original and paraphrased comment.
|
| 43 |
-
Returns a score between 0 and 1.
|
| 44 |
-
"""
|
| 45 |
-
try:
|
| 46 |
-
reference = [nltk.word_tokenize(original.lower())]
|
| 47 |
-
candidate = nltk.word_tokenize(paraphrased.lower())
|
| 48 |
-
score = sentence_bleu(reference, candidate, weights=(0.25, 0.25, 0.25, 0.25))
|
| 49 |
-
return round(score, 2)
|
| 50 |
-
except Exception as e:
|
| 51 |
-
print(f"Error computing BLEU score: {str(e)}")
|
| 52 |
-
return None
|
| 53 |
|
| 54 |
def compute_rouge_score(original, paraphrased):
|
| 55 |
"""
|
|
|
|
| 1 |
# metrics.py
|
| 2 |
import nltk
|
| 3 |
+
#from nltk.translate.bleu_score import sentence_bleu
|
| 4 |
from rouge_score import rouge_scorer
|
| 5 |
from model_loader import metrics_models
|
| 6 |
|
|
|
|
| 37 |
print(f"Error computing empathy score: {str(e)}")
|
| 38 |
return None
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def compute_rouge_score(original, paraphrased):
|
| 42 |
"""
|