Update app.py
Browse files
app.py
CHANGED
|
@@ -20,16 +20,18 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
| 20 |
from fastapi.staticfiles import StaticFiles
|
| 21 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 22 |
from huggingface_hub import hf_hub_download
|
| 23 |
-
from loguru import logger
|
| 24 |
from snowflake import SnowflakeGenerator
|
| 25 |
|
| 26 |
if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio":
|
| 27 |
from modelscope import patch_hub
|
| 28 |
patch_hub()
|
| 29 |
|
| 30 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:
|
| 31 |
os.environ["RWKV_V7_ON"] = "1"
|
| 32 |
os.environ["RWKV_JIT_ON"] = "1"
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
class ChatMessage(BaseModel):
|
| 35 |
role: str = Field()
|
|
@@ -44,10 +46,6 @@ class LogprobsContent(BaseModel):
|
|
| 44 |
content: Optional[List[Logprob]] = None
|
| 45 |
refusal: Optional[List[Logprob]] = None
|
| 46 |
|
| 47 |
-
class FunctionCall(BaseModel):
|
| 48 |
-
name: str
|
| 49 |
-
arguments: str
|
| 50 |
-
|
| 51 |
class ChatCompletionMessage(BaseModel):
|
| 52 |
role: Optional[str] = Field(None)
|
| 53 |
content: Optional[str] = Field(None)
|
|
@@ -57,11 +55,6 @@ class ChatCompletionMessage(BaseModel):
|
|
| 57 |
class PromptTokensDetails(BaseModel):
|
| 58 |
cached_tokens: int
|
| 59 |
|
| 60 |
-
class CompletionTokensDetails(BaseModel):
|
| 61 |
-
reasoning_tokens: int
|
| 62 |
-
accepted_prediction_tokens: int
|
| 63 |
-
rejected_prediction_tokens: int
|
| 64 |
-
|
| 65 |
class Usage(BaseModel):
|
| 66 |
prompt_tokens: int
|
| 67 |
completion_tokens: int
|
|
@@ -75,14 +68,6 @@ class ChatCompletionChoice(BaseModel):
|
|
| 75 |
logprobs: Optional[LogprobsContent] = None
|
| 76 |
finish_reason: Optional[str] = Field(...)
|
| 77 |
|
| 78 |
-
class ChatCompletion(BaseModel):
|
| 79 |
-
id: str = Field(...)
|
| 80 |
-
object: Literal["chat.completion"] = "chat.completion"
|
| 81 |
-
created: int = Field(...)
|
| 82 |
-
model: str
|
| 83 |
-
choices: List[ChatCompletionChoice]
|
| 84 |
-
usage: Usage
|
| 85 |
-
|
| 86 |
class ChatCompletionChunk(BaseModel):
|
| 87 |
id: str = Field(...)
|
| 88 |
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
|
@@ -113,20 +98,6 @@ def remove_nested_think_tags_stack(text):
|
|
| 113 |
i += 1
|
| 114 |
return result
|
| 115 |
|
| 116 |
-
def parse_think_response(full_response: str):
|
| 117 |
-
think_start = full_response.find("<think")
|
| 118 |
-
if think_start == -1:
|
| 119 |
-
return None, full_response.strip()
|
| 120 |
-
think_end = full_response.find("</think>")
|
| 121 |
-
if think_end == -1:
|
| 122 |
-
reasoning = full_response[think_start:].strip()
|
| 123 |
-
content = ""
|
| 124 |
-
else:
|
| 125 |
-
reasoning = full_response[think_start : think_end + 9].strip()
|
| 126 |
-
content = full_response[think_end + 9 :].strip()
|
| 127 |
-
reasoning_content = reasoning.replace("<think", "").replace("</think>", "").strip()
|
| 128 |
-
return reasoning_content, content
|
| 129 |
-
|
| 130 |
def cleanMessages(messages: List[ChatMessage], removeThinkingContent: bool = False):
|
| 131 |
promptStrList = []
|
| 132 |
for message in messages:
|
|
@@ -138,35 +109,6 @@ def cleanMessages(messages: List[ChatMessage], removeThinkingContent: bool = Fal
|
|
| 138 |
promptStrList.append(f"{role_str}: {content}")
|
| 139 |
return "\n\n".join(promptStrList)
|
| 140 |
|
| 141 |
-
def format_bytes(size):
|
| 142 |
-
power = 2**10
|
| 143 |
-
n = 0
|
| 144 |
-
power_labels = {0: "", 1: "K", 2: "M", 3: "G", 4: "T"}
|
| 145 |
-
while size > power:
|
| 146 |
-
size /= power
|
| 147 |
-
n += 1
|
| 148 |
-
return f"{size:.4f}{power_labels[n]+'B'}"
|
| 149 |
-
|
| 150 |
-
LOGGER_QUEUE = queue.Queue(5)
|
| 151 |
-
|
| 152 |
-
def logger_worker():
|
| 153 |
-
while True:
|
| 154 |
-
item = LOGGER_QUEUE.get()
|
| 155 |
-
try:
|
| 156 |
-
requests.post(
|
| 157 |
-
os.environ.get("LOG_PORT"),
|
| 158 |
-
headers={"Content-Type": "application/json"},
|
| 159 |
-
json=item,
|
| 160 |
-
)
|
| 161 |
-
except Exception:
|
| 162 |
-
pass
|
| 163 |
-
|
| 164 |
-
if os.environ.get("LOG_PORT"):
|
| 165 |
-
threading.Thread(target=logger_worker).start()
|
| 166 |
-
|
| 167 |
-
def log(item):
|
| 168 |
-
LOGGER_QUEUE.put_nowait(item)
|
| 169 |
-
|
| 170 |
class SamplerConfig(BaseModel):
|
| 171 |
max_tokens: int = 4096
|
| 172 |
temperature: float = 1.0
|
|
@@ -187,6 +129,7 @@ class ModelConfig(BaseModel):
|
|
| 187 |
DEFAULT_REASONING: bool = False
|
| 188 |
REASONING: bool = False
|
| 189 |
VOCAB: str = "rwkv_vocab_v20230424"
|
|
|
|
| 190 |
DEFAULT_SAMPLER: SamplerConfig = Field(default_factory=SamplerConfig)
|
| 191 |
|
| 192 |
class Config(BaseSettings):
|
|
@@ -200,19 +143,22 @@ class Config(BaseSettings):
|
|
| 200 |
SERVICE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192",
|
| 201 |
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192.pth",
|
| 202 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 203 |
-
REASONING=True
|
|
|
|
| 204 |
),
|
| 205 |
ModelConfig(
|
| 206 |
SERVICE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192",
|
| 207 |
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192.pth",
|
| 208 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 209 |
-
REASONING=True
|
|
|
|
| 210 |
),
|
| 211 |
ModelConfig(
|
| 212 |
SERVICE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096",
|
| 213 |
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096.pth",
|
| 214 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 215 |
-
REASONING=True
|
|
|
|
| 216 |
),
|
| 217 |
ModelConfig(
|
| 218 |
SERVICE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096",
|
|
@@ -220,7 +166,8 @@ class Config(BaseSettings):
|
|
| 220 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 221 |
REASONING=True,
|
| 222 |
DEFAULT_CHAT=True,
|
| 223 |
-
DEFAULT_REASONING=True
|
|
|
|
| 224 |
),
|
| 225 |
]
|
| 226 |
|
|
@@ -248,7 +195,6 @@ if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available():
|
|
| 248 |
if CONFIG.RWKV_CUDA_ON and "cuda" in CONFIG.STRATEGY.lower():
|
| 249 |
from pynvml import *
|
| 250 |
nvmlInit()
|
| 251 |
-
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
| 252 |
os.environ["RWKV_CUDA_ON"] = "1"
|
| 253 |
torch.backends.cudnn.benchmark = True
|
| 254 |
torch.backends.cudnn.allow_tf32 = True
|
|
@@ -365,7 +311,7 @@ def needs_verification(msg: str, model: str) -> bool:
|
|
| 365 |
triggers = ["es verdad", "dato", "precio", "cuando", "quien", "noticia", "actualidad", "verify"]
|
| 366 |
return any(t in msg.lower() for t in triggers)
|
| 367 |
|
| 368 |
-
app = FastAPI(title="RWKV
|
| 369 |
|
| 370 |
app.add_middleware(
|
| 371 |
CORSMiddleware,
|
|
@@ -382,6 +328,28 @@ async def privacy_middleware(request: Request, call_next):
|
|
| 382 |
request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80)
|
| 383 |
return await call_next(request)
|
| 384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
|
| 386 |
ctx = ctx.replace("\r\n", "\n")
|
| 387 |
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
|
|
@@ -404,36 +372,63 @@ def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model
|
|
| 404 |
out_tokens = []
|
| 405 |
out_last = 0
|
| 406 |
cache_word_list = []
|
|
|
|
|
|
|
|
|
|
| 407 |
for i in range(max_tokens):
|
| 408 |
for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
|
| 409 |
token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
|
|
|
| 410 |
if token == 0:
|
| 411 |
yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state}
|
| 412 |
del out; gc.collect(); return
|
|
|
|
| 413 |
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
|
| 414 |
model_tokens.append(token)
|
| 415 |
out_tokens.append(token)
|
|
|
|
| 416 |
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
|
| 417 |
occurrence[token] = 1 + (occurrence.get(token, 0))
|
|
|
|
| 418 |
tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
|
| 419 |
if "\ufffd" in tmp: continue
|
| 420 |
cache_word_list.append(tmp)
|
| 421 |
out_last = i + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
if len(cache_word_list) > 1:
|
| 423 |
yield {"content": cache_word_list.pop(0), "finish_reason": None}
|
|
|
|
| 424 |
yield {"content": "".join(cache_word_list), "finish_reason": "length"}
|
| 425 |
|
| 426 |
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
|
| 427 |
clean_msg = cleanMessages(request.messages, enableReasoning)
|
| 428 |
prompt = f"{clean_msg}\n\nAssistant:{' <think' if enableReasoning else ''}"
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
yield "data: [DONE]\n\n"
|
| 438 |
|
| 439 |
@app.post("/api/v1/chat/completions")
|
|
@@ -446,26 +441,34 @@ async def chat_completions(request: ChatCompletionRequest):
|
|
| 446 |
if "rwkv-latest" in model_key:
|
| 447 |
if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model = DEFAULT_REASONING_MODEL_NAME
|
| 448 |
elif DEFALUT_MODEL_NAME: target_model = DEFALUT_MODEL_NAME
|
|
|
|
| 449 |
if target_model not in MODEL_STORAGE:
|
| 450 |
raise HTTPException(404, f"Model {target_model} not loaded.")
|
| 451 |
request.model = target_model
|
|
|
|
| 452 |
default_sampler = MODEL_STORAGE[target_model].MODEL_CONFIG.DEFAULT_SAMPLER
|
| 453 |
req_data = request.model_dump()
|
| 454 |
for k, v in default_sampler.model_dump().items():
|
| 455 |
if req_data.get(k) is None: req_data[k] = v
|
| 456 |
realRequest = ChatCompletionRequest(**req_data)
|
|
|
|
| 457 |
sys_msg = ChatMessage(role="System", content=TruthProtocol.STRICT_SYSTEM_PROMPT)
|
| 458 |
if realRequest.messages:
|
| 459 |
if realRequest.messages[0].role == "System":
|
| 460 |
realRequest.messages[0].content = f"{TruthProtocol.STRICT_SYSTEM_PROMPT}\n\n{realRequest.messages[0].content}"
|
| 461 |
else:
|
| 462 |
realRequest.messages.insert(0, sys_msg)
|
|
|
|
| 463 |
last_msg = realRequest.messages[-1]
|
| 464 |
if last_msg.role == "user" and needs_verification(last_msg.content, raw_model):
|
| 465 |
ctx = search_facts(last_msg.content)
|
| 466 |
if ctx:
|
| 467 |
realRequest.messages.insert(-1, ChatMessage(role="System", content=ctx))
|
|
|
|
| 468 |
TruthProtocol.enforce_truth_params(realRequest)
|
|
|
|
|
|
|
|
|
|
| 469 |
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")
|
| 470 |
|
| 471 |
@app.get("/api/v1/models")
|
|
|
|
| 20 |
from fastapi.staticfiles import StaticFiles
|
| 21 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 22 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 23 |
from snowflake import SnowflakeGenerator
|
| 24 |
|
| 25 |
if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio":
|
| 26 |
from modelscope import patch_hub
|
| 27 |
patch_hub()
|
| 28 |
|
| 29 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:64"
|
| 30 |
os.environ["RWKV_V7_ON"] = "1"
|
| 31 |
os.environ["RWKV_JIT_ON"] = "1"
|
| 32 |
+
os.environ["RWKV_CUDA_ON"] = "1"
|
| 33 |
+
|
| 34 |
+
GPU_LOCK = asyncio.Lock()
|
| 35 |
|
| 36 |
class ChatMessage(BaseModel):
|
| 37 |
role: str = Field()
|
|
|
|
| 46 |
content: Optional[List[Logprob]] = None
|
| 47 |
refusal: Optional[List[Logprob]] = None
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
class ChatCompletionMessage(BaseModel):
|
| 50 |
role: Optional[str] = Field(None)
|
| 51 |
content: Optional[str] = Field(None)
|
|
|
|
| 55 |
class PromptTokensDetails(BaseModel):
|
| 56 |
cached_tokens: int
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
class Usage(BaseModel):
|
| 59 |
prompt_tokens: int
|
| 60 |
completion_tokens: int
|
|
|
|
| 68 |
logprobs: Optional[LogprobsContent] = None
|
| 69 |
finish_reason: Optional[str] = Field(...)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
class ChatCompletionChunk(BaseModel):
|
| 72 |
id: str = Field(...)
|
| 73 |
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
|
|
|
| 98 |
i += 1
|
| 99 |
return result
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
def cleanMessages(messages: List[ChatMessage], removeThinkingContent: bool = False):
|
| 102 |
promptStrList = []
|
| 103 |
for message in messages:
|
|
|
|
| 109 |
promptStrList.append(f"{role_str}: {content}")
|
| 110 |
return "\n\n".join(promptStrList)
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
class SamplerConfig(BaseModel):
|
| 113 |
max_tokens: int = 4096
|
| 114 |
temperature: float = 1.0
|
|
|
|
| 129 |
DEFAULT_REASONING: bool = False
|
| 130 |
REASONING: bool = False
|
| 131 |
VOCAB: str = "rwkv_vocab_v20230424"
|
| 132 |
+
CTX_LEN: int = 4096
|
| 133 |
DEFAULT_SAMPLER: SamplerConfig = Field(default_factory=SamplerConfig)
|
| 134 |
|
| 135 |
class Config(BaseSettings):
|
|
|
|
| 143 |
SERVICE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192",
|
| 144 |
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a4-2.9b-20251118-ctx8192.pth",
|
| 145 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 146 |
+
REASONING=True,
|
| 147 |
+
CTX_LEN=8192
|
| 148 |
),
|
| 149 |
ModelConfig(
|
| 150 |
SERVICE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192",
|
| 151 |
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a3-1.5b-20251015-ctx8192.pth",
|
| 152 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 153 |
+
REASONING=True,
|
| 154 |
+
CTX_LEN=8192
|
| 155 |
),
|
| 156 |
ModelConfig(
|
| 157 |
SERVICE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096",
|
| 158 |
DOWNLOAD_MODEL_FILE_NAME="rwkv7-g1a-0.4b-20250905-ctx4096.pth",
|
| 159 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 160 |
+
REASONING=True,
|
| 161 |
+
CTX_LEN=4096
|
| 162 |
),
|
| 163 |
ModelConfig(
|
| 164 |
SERVICE_NAME="rwkv7-g1a-0.1b-20250728-ctx4096",
|
|
|
|
| 166 |
DOWNLOAD_MODEL_REPO_ID="BlinkDL/rwkv7-g1",
|
| 167 |
REASONING=True,
|
| 168 |
DEFAULT_CHAT=True,
|
| 169 |
+
DEFAULT_REASONING=True,
|
| 170 |
+
CTX_LEN=4096
|
| 171 |
),
|
| 172 |
]
|
| 173 |
|
|
|
|
| 195 |
if CONFIG.RWKV_CUDA_ON and "cuda" in CONFIG.STRATEGY.lower():
|
| 196 |
from pynvml import *
|
| 197 |
nvmlInit()
|
|
|
|
| 198 |
os.environ["RWKV_CUDA_ON"] = "1"
|
| 199 |
torch.backends.cudnn.benchmark = True
|
| 200 |
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
| 311 |
triggers = ["es verdad", "dato", "precio", "cuando", "quien", "noticia", "actualidad", "verify"]
|
| 312 |
return any(t in msg.lower() for t in triggers)
|
| 313 |
|
| 314 |
+
app = FastAPI(title="RWKV Ultimate Server")
|
| 315 |
|
| 316 |
app.add_middleware(
|
| 317 |
CORSMiddleware,
|
|
|
|
| 328 |
request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80)
|
| 329 |
return await call_next(request)
|
| 330 |
|
| 331 |
+
def prune_context(messages: List[ChatMessage], model_name: str, max_gen_tokens: int):
|
| 332 |
+
storage = MODEL_STORAGE[model_name]
|
| 333 |
+
limit = storage.MODEL_CONFIG.CTX_LEN
|
| 334 |
+
pipeline = storage.pipeline
|
| 335 |
+
|
| 336 |
+
current_text = cleanMessages(messages)
|
| 337 |
+
tokens = pipeline.encode(current_text)
|
| 338 |
+
|
| 339 |
+
if len(tokens) + max_gen_tokens < limit:
|
| 340 |
+
return messages
|
| 341 |
+
|
| 342 |
+
system_msgs = [m for m in messages if m.role == "System"]
|
| 343 |
+
other_msgs = [m for m in messages if m.role != "System"]
|
| 344 |
+
|
| 345 |
+
while len(other_msgs) > 1:
|
| 346 |
+
candidate_text = cleanMessages(system_msgs + other_msgs)
|
| 347 |
+
if len(pipeline.encode(candidate_text)) + max_gen_tokens < limit:
|
| 348 |
+
break
|
| 349 |
+
other_msgs.pop(0)
|
| 350 |
+
|
| 351 |
+
return system_msgs + other_msgs
|
| 352 |
+
|
| 353 |
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
|
| 354 |
ctx = ctx.replace("\r\n", "\n")
|
| 355 |
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
|
|
|
|
| 372 |
out_tokens = []
|
| 373 |
out_last = 0
|
| 374 |
cache_word_list = []
|
| 375 |
+
|
| 376 |
+
stop_sequences = request.stop if request.stop else []
|
| 377 |
+
|
| 378 |
for i in range(max_tokens):
|
| 379 |
for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
|
| 380 |
token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
| 381 |
+
|
| 382 |
if token == 0:
|
| 383 |
yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state}
|
| 384 |
del out; gc.collect(); return
|
| 385 |
+
|
| 386 |
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
|
| 387 |
model_tokens.append(token)
|
| 388 |
out_tokens.append(token)
|
| 389 |
+
|
| 390 |
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
|
| 391 |
occurrence[token] = 1 + (occurrence.get(token, 0))
|
| 392 |
+
|
| 393 |
tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
|
| 394 |
if "\ufffd" in tmp: continue
|
| 395 |
cache_word_list.append(tmp)
|
| 396 |
out_last = i + 1
|
| 397 |
+
|
| 398 |
+
current_buffer = "".join(cache_word_list)
|
| 399 |
+
for s in stop_sequences:
|
| 400 |
+
if s in current_buffer:
|
| 401 |
+
final_content = current_buffer.split(s)[0]
|
| 402 |
+
yield {"content": final_content, "finish_reason": "stop", "state": model_state}
|
| 403 |
+
del out; gc.collect(); return
|
| 404 |
+
|
| 405 |
if len(cache_word_list) > 1:
|
| 406 |
yield {"content": cache_word_list.pop(0), "finish_reason": None}
|
| 407 |
+
|
| 408 |
yield {"content": "".join(cache_word_list), "finish_reason": "length"}
|
| 409 |
|
| 410 |
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
|
| 411 |
clean_msg = cleanMessages(request.messages, enableReasoning)
|
| 412 |
prompt = f"{clean_msg}\n\nAssistant:{' <think' if enableReasoning else ''}"
|
| 413 |
+
|
| 414 |
+
async with GPU_LOCK:
|
| 415 |
+
try:
|
| 416 |
+
out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state)
|
| 417 |
+
|
| 418 |
+
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n"
|
| 419 |
+
|
| 420 |
+
for chunk in generate(request, out, model_tokens, model_state, max_tokens=request.max_tokens or 4096):
|
| 421 |
+
content = chunk.get("content", "")
|
| 422 |
+
finish = chunk.get("finish_reason", None)
|
| 423 |
+
if content:
|
| 424 |
+
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
|
| 425 |
+
if finish:
|
| 426 |
+
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=''), finish_reason=finish)]).model_dump_json()}\n\n"
|
| 427 |
+
break
|
| 428 |
+
await asyncio.sleep(0)
|
| 429 |
+
finally:
|
| 430 |
+
pass
|
| 431 |
+
|
| 432 |
yield "data: [DONE]\n\n"
|
| 433 |
|
| 434 |
@app.post("/api/v1/chat/completions")
|
|
|
|
| 441 |
if "rwkv-latest" in model_key:
|
| 442 |
if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model = DEFAULT_REASONING_MODEL_NAME
|
| 443 |
elif DEFALUT_MODEL_NAME: target_model = DEFALUT_MODEL_NAME
|
| 444 |
+
|
| 445 |
if target_model not in MODEL_STORAGE:
|
| 446 |
raise HTTPException(404, f"Model {target_model} not loaded.")
|
| 447 |
request.model = target_model
|
| 448 |
+
|
| 449 |
default_sampler = MODEL_STORAGE[target_model].MODEL_CONFIG.DEFAULT_SAMPLER
|
| 450 |
req_data = request.model_dump()
|
| 451 |
for k, v in default_sampler.model_dump().items():
|
| 452 |
if req_data.get(k) is None: req_data[k] = v
|
| 453 |
realRequest = ChatCompletionRequest(**req_data)
|
| 454 |
+
|
| 455 |
sys_msg = ChatMessage(role="System", content=TruthProtocol.STRICT_SYSTEM_PROMPT)
|
| 456 |
if realRequest.messages:
|
| 457 |
if realRequest.messages[0].role == "System":
|
| 458 |
realRequest.messages[0].content = f"{TruthProtocol.STRICT_SYSTEM_PROMPT}\n\n{realRequest.messages[0].content}"
|
| 459 |
else:
|
| 460 |
realRequest.messages.insert(0, sys_msg)
|
| 461 |
+
|
| 462 |
last_msg = realRequest.messages[-1]
|
| 463 |
if last_msg.role == "user" and needs_verification(last_msg.content, raw_model):
|
| 464 |
ctx = search_facts(last_msg.content)
|
| 465 |
if ctx:
|
| 466 |
realRequest.messages.insert(-1, ChatMessage(role="System", content=ctx))
|
| 467 |
+
|
| 468 |
TruthProtocol.enforce_truth_params(realRequest)
|
| 469 |
+
|
| 470 |
+
realRequest.messages = prune_context(realRequest.messages, target_model, realRequest.max_tokens or 1024)
|
| 471 |
+
|
| 472 |
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")
|
| 473 |
|
| 474 |
@app.get("/api/v1/models")
|