Update app.py
Browse files
app.py
CHANGED
|
@@ -16,14 +16,10 @@ if os.environ.get("MODELSCOPE_ENVIRONMENT") == "studio":
|
|
| 16 |
from modelscope import patch_hub
|
| 17 |
patch_hub()
|
| 18 |
|
| 19 |
-
# Configuraci贸n de Pytorch para evitar fragmentaci贸n
|
| 20 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256"
|
| 21 |
-
|
| 22 |
-
# Configuraci贸n RWKV
|
| 23 |
os.environ["RWKV_V7_ON"] = "1"
|
| 24 |
os.environ["RWKV_JIT_ON"] = "1"
|
| 25 |
|
| 26 |
-
# Imports del proyecto
|
| 27 |
from config import CONFIG, ModelConfig
|
| 28 |
from utils import (
|
| 29 |
cleanMessages,
|
|
@@ -35,13 +31,11 @@ from utils import (
|
|
| 35 |
|
| 36 |
from huggingface_hub import hf_hub_download
|
| 37 |
from loguru import logger
|
| 38 |
-
from rich import print
|
| 39 |
from snowflake import SnowflakeGenerator
|
| 40 |
import numpy as np
|
| 41 |
import torch
|
| 42 |
import requests
|
| 43 |
|
| 44 |
-
# --- NUEVAS LIBRER脥AS (Faker y B煤squeda) ---
|
| 45 |
try:
|
| 46 |
from duckduckgo_search import DDGS
|
| 47 |
HAS_DDG = True
|
|
@@ -54,31 +48,26 @@ try:
|
|
| 54 |
fake = Faker()
|
| 55 |
HAS_FAKER = True
|
| 56 |
except ImportError:
|
| 57 |
-
logger.warning("Faker not found. IP masking disabled.
|
| 58 |
HAS_FAKER = False
|
| 59 |
|
| 60 |
-
|
| 61 |
-
from fastapi import FastAPI, HTTPException, Request, Response
|
| 62 |
from fastapi.responses import StreamingResponse
|
| 63 |
from fastapi.middleware.cors import CORSMiddleware
|
| 64 |
from fastapi.staticfiles import StaticFiles
|
| 65 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 66 |
from pydantic import BaseModel, Field, model_validator
|
| 67 |
|
| 68 |
-
# --- INICIALIZACI脫N
|
| 69 |
-
|
| 70 |
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)
|
| 71 |
|
| 72 |
-
# Configuraci贸n de Estrategia (CUDA/CPU)
|
| 73 |
if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available():
|
| 74 |
-
logger.info(f"CUDA not found, fall back to cpu")
|
| 75 |
CONFIG.STRATEGY = "cpu fp16"
|
| 76 |
|
| 77 |
if "cuda" in CONFIG.STRATEGY.lower():
|
| 78 |
from pynvml import *
|
| 79 |
nvmlInit()
|
| 80 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
| 81 |
-
# Habilitar optimizaciones de CUDA para RWKV
|
| 82 |
torch.backends.cudnn.benchmark = True
|
| 83 |
torch.backends.cudnn.allow_tf32 = True
|
| 84 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
@@ -93,16 +82,7 @@ from api_types import (
|
|
| 93 |
ChatCompletionChoice, ChatCompletionMessage
|
| 94 |
)
|
| 95 |
|
| 96 |
-
# ---
|
| 97 |
-
def logGPUState():
|
| 98 |
-
if "cuda" in CONFIG.STRATEGY:
|
| 99 |
-
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
| 100 |
-
logger.info(
|
| 101 |
-
f"[STATUS] Torch - {format_bytes(torch.cuda.memory_allocated())} - "
|
| 102 |
-
f"NVML - vram {format_bytes(gpu_info.total)} used {format_bytes(gpu_info.used)} free {format_bytes(gpu_info.free)}"
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
# --- CARGA DE MODELOS ---
|
| 106 |
class ModelStorage:
|
| 107 |
MODEL_CONFIG: Optional[ModelConfig] = None
|
| 108 |
model: Optional[RWKV] = None
|
|
@@ -112,26 +92,16 @@ MODEL_STORAGE: Dict[str, ModelStorage] = {}
|
|
| 112 |
DEFALUT_MODEL_NAME = None
|
| 113 |
DEFAULT_REASONING_MODEL_NAME = None
|
| 114 |
|
| 115 |
-
logger.info(f"STRATEGY - {CONFIG.STRATEGY}")
|
| 116 |
-
logGPUState()
|
| 117 |
-
|
| 118 |
for model_config in CONFIG.MODELS:
|
| 119 |
-
logger.info(f"Load Model - {model_config.SERVICE_NAME}")
|
| 120 |
-
|
| 121 |
if model_config.MODEL_FILE_PATH is None:
|
| 122 |
model_config.MODEL_FILE_PATH = hf_hub_download(
|
| 123 |
repo_id=model_config.DOWNLOAD_MODEL_REPO_ID,
|
| 124 |
filename=model_config.DOWNLOAD_MODEL_FILE_NAME,
|
| 125 |
local_dir=model_config.DOWNLOAD_MODEL_DIR,
|
| 126 |
)
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
# Gesti贸n de modelos por defecto
|
| 129 |
-
if model_config.DEFAULT_CHAT:
|
| 130 |
-
DEFALUT_MODEL_NAME = model_config.SERVICE_NAME
|
| 131 |
-
if model_config.DEFAULT_REASONING:
|
| 132 |
-
DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME
|
| 133 |
-
|
| 134 |
-
# Carga f铆sica del modelo
|
| 135 |
MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage()
|
| 136 |
MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config
|
| 137 |
MODEL_STORAGE[model_config.SERVICE_NAME].model = RWKV(
|
|
@@ -141,20 +111,13 @@ for model_config in CONFIG.MODELS:
|
|
| 141 |
MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = PIPELINE(
|
| 142 |
MODEL_STORAGE[model_config.SERVICE_NAME].model, model_config.VOCAB
|
| 143 |
)
|
| 144 |
-
|
| 145 |
-
# Limpieza de VRAM tras carga
|
| 146 |
if "cuda" in CONFIG.STRATEGY:
|
| 147 |
torch.cuda.empty_cache()
|
| 148 |
gc.collect()
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
# --- CLASES DE DATOS ---
|
| 153 |
class ChatCompletionRequest(BaseModel):
|
| 154 |
-
model: str = Field(
|
| 155 |
-
default="rwkv-latest",
|
| 156 |
-
description="Suffixes: `:thinking` for reasoning, `:online` for web search.",
|
| 157 |
-
)
|
| 158 |
messages: Optional[List[ChatMessage]] = Field(default=None)
|
| 159 |
prompt: Optional[str] = Field(default=None)
|
| 160 |
max_tokens: Optional[int] = Field(default=None)
|
|
@@ -164,8 +127,6 @@ class ChatCompletionRequest(BaseModel):
|
|
| 164 |
count_penalty: Optional[float] = Field(default=None)
|
| 165 |
penalty_decay: Optional[float] = Field(default=None)
|
| 166 |
stream: Optional[bool] = Field(default=False)
|
| 167 |
-
state_name: Optional[str] = Field(default=None)
|
| 168 |
-
include_usage: Optional[bool] = Field(default=False)
|
| 169 |
stop: Optional[list[str]] = Field(["\n\n"])
|
| 170 |
stop_tokens: Optional[list[int]] = Field([0])
|
| 171 |
|
|
@@ -177,8 +138,49 @@ class ChatCompletionRequest(BaseModel):
|
|
| 177 |
raise ValueError("messages and prompt cannot coexist.")
|
| 178 |
return data
|
| 179 |
|
| 180 |
-
# ---
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
app.add_middleware(
|
| 184 |
CORSMiddleware,
|
|
@@ -189,324 +191,167 @@ app.add_middleware(
|
|
| 189 |
)
|
| 190 |
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5)
|
| 191 |
|
| 192 |
-
# ---
|
| 193 |
@app.middleware("http")
|
| 194 |
-
async def
|
| 195 |
-
# a. IP Masking con Faker
|
| 196 |
-
original_ip = request.client.host if request.client else "unknown"
|
| 197 |
-
fake_ip = fake.ipv4() if HAS_FAKER else "127.0.0.1"
|
| 198 |
-
|
| 199 |
-
# Sobrescribimos la IP en el scope para que los logs y la l贸gica posterior vean la falsa
|
| 200 |
-
# Esto "oculta" la IPv4 real de cualquier logger subsiguiente
|
| 201 |
if HAS_FAKER:
|
| 202 |
-
|
| 203 |
-
# pero podemos inyectar un header o modificar el scope.
|
| 204 |
-
# Aqu铆 simulamos que la petici贸n viene de la IP falsa.
|
| 205 |
-
request.scope["client"] = (fake_ip, request.client.port if request.client else 80)
|
| 206 |
-
|
| 207 |
-
# b. Rate Limiting Simple (Anti-Abuse)
|
| 208 |
-
# Nota: Si activamos Faker, el rate limit por IP real se vuelve in煤til a menos que
|
| 209 |
-
# lo hagamos ANTES de modificar el scope. (Aqu铆 lo hacemos conceptualmente).
|
| 210 |
-
# Para este ejemplo, permitimos todo, pero logueamos la IP ofuscada.
|
| 211 |
-
|
| 212 |
-
logger.info(f"[PRIVACY] Masked Real IP {original_ip} -> Fake IP {fake_ip}")
|
| 213 |
-
|
| 214 |
response = await call_next(request)
|
| 215 |
-
|
| 216 |
-
# c. Security Headers
|
| 217 |
-
response.headers["X-Content-Type-Options"] = "nosniff"
|
| 218 |
-
response.headers["X-Frame-Options"] = "DENY"
|
| 219 |
-
|
| 220 |
return response
|
| 221 |
|
| 222 |
-
# ---
|
| 223 |
-
# Evita hacer la misma petici贸n a DDG repetidamente
|
| 224 |
search_cache = collections.OrderedDict()
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
def get_cached_search(query: str):
|
| 229 |
-
current_time = time.time()
|
| 230 |
-
if query in search_cache:
|
| 231 |
-
timestamp, result = search_cache[query]
|
| 232 |
-
if current_time - timestamp < SEARCH_CACHE_TTL:
|
| 233 |
-
logger.info(f"[CACHE] Hit for query: {query}")
|
| 234 |
-
search_cache.move_to_end(query)
|
| 235 |
-
return result
|
| 236 |
-
return None
|
| 237 |
-
|
| 238 |
-
def set_cached_search(query: str, result: str):
|
| 239 |
-
if len(search_cache) >= SEARCH_CACHE_SIZE:
|
| 240 |
-
search_cache.popitem(last=False)
|
| 241 |
-
search_cache[query] = (time.time(), result)
|
| 242 |
-
|
| 243 |
-
def search_web_and_get_context(query: str, max_results: int = 4) -> str:
|
| 244 |
if not HAS_DDG: return ""
|
| 245 |
-
|
| 246 |
-
# Check Cache
|
| 247 |
-
cached = get_cached_search(query)
|
| 248 |
-
if cached: return cached
|
| 249 |
|
| 250 |
-
logger.info(f"[SEARCH]
|
| 251 |
try:
|
| 252 |
results = DDGS().text(query, max_results=max_results)
|
| 253 |
-
if not results:
|
| 254 |
-
return "Web search executed but returned no results."
|
| 255 |
-
|
| 256 |
-
context_str = "Web Search Results (Real-time data):\n\n"
|
| 257 |
-
for i, res in enumerate(results):
|
| 258 |
-
context_str += f"Result {i+1} [{res['title']}]: {res['body']} (Source: {res['href']})\n\n"
|
| 259 |
|
| 260 |
-
|
|
|
|
| 261 |
|
| 262 |
-
#
|
| 263 |
-
|
| 264 |
-
|
|
|
|
| 265 |
except Exception as e:
|
| 266 |
-
logger.error(f"[SEARCH]
|
| 267 |
return ""
|
| 268 |
|
| 269 |
-
def
|
| 270 |
-
if ":online" in
|
| 271 |
-
keywords = ["
|
| 272 |
-
return any(k in
|
| 273 |
-
|
| 274 |
-
# --- L脫GICA CORE DE RWKV (PREFILL & GENERATE) ---
|
| 275 |
|
|
|
|
| 276 |
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
|
| 277 |
ctx = ctx.replace("\r\n", "\n")
|
| 278 |
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
|
| 279 |
tokens = [int(x) for x in tokens]
|
| 280 |
model_tokens += tokens
|
| 281 |
-
|
| 282 |
while len(tokens) > 0:
|
| 283 |
-
out, model_state = MODEL_STORAGE[request.model].model.forward(
|
| 284 |
-
tokens[: CONFIG.CHUNK_LEN], model_state
|
| 285 |
-
)
|
| 286 |
tokens = tokens[CONFIG.CHUNK_LEN :]
|
| 287 |
await asyncio.sleep(0)
|
| 288 |
return out, model_tokens, model_state
|
| 289 |
|
| 290 |
def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model_state, max_tokens=2048):
|
| 291 |
args = PIPELINE_ARGS(
|
| 292 |
-
temperature=max(0.
|
| 293 |
top_p=request.top_p,
|
| 294 |
alpha_frequency=request.count_penalty,
|
| 295 |
alpha_presence=request.presence_penalty,
|
| 296 |
token_ban=[], token_stop=[0]
|
| 297 |
)
|
| 298 |
-
|
| 299 |
occurrence = {}
|
| 300 |
-
out_tokens
|
| 301 |
out_last = 0
|
| 302 |
cache_word_list = []
|
| 303 |
-
|
| 304 |
-
|
| 305 |
for i in range(max_tokens):
|
| 306 |
-
for n in occurrence:
|
| 307 |
-
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
|
| 308 |
|
| 309 |
-
token = MODEL_STORAGE[request.model].pipeline.sample_logits(
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
if token == 0 and token in request.stop_tokens:
|
| 315 |
-
yield {"content": "".join(cache_word_list), "tokens": out_tokens[out_last:], "finish_reason": "stop:token:0", "state": model_state}
|
| 316 |
-
del out; gc.collect(); return
|
| 317 |
|
| 318 |
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
|
| 319 |
model_tokens.append(token)
|
| 320 |
out_tokens.append(token)
|
| 321 |
-
|
| 322 |
-
# Penalty Decay
|
| 323 |
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
|
| 324 |
occurrence[token] = 1 + (occurrence.get(token, 0))
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
tmp: str = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
|
| 328 |
if "\ufffd" in tmp: continue
|
| 329 |
-
|
| 330 |
cache_word_list.append(tmp)
|
| 331 |
-
output_cache_str = "".join(cache_word_list)
|
| 332 |
-
|
| 333 |
-
# Handling Stop Words
|
| 334 |
-
for stop_words in request.stop:
|
| 335 |
-
if stop_words in output_cache_str:
|
| 336 |
-
yield {
|
| 337 |
-
"content": output_cache_str.replace(stop_words, ""),
|
| 338 |
-
"tokens": out_tokens[out_last - cache_word_len :],
|
| 339 |
-
"finish_reason": f"stop:words:{stop_words}",
|
| 340 |
-
"state": model_state
|
| 341 |
-
}
|
| 342 |
-
del out; gc.collect(); return
|
| 343 |
-
|
| 344 |
-
if len(cache_word_list) > cache_word_len:
|
| 345 |
-
yield {"content": cache_word_list.pop(0), "tokens": out_tokens[out_last - cache_word_len :], "finish_reason": None}
|
| 346 |
out_last = i + 1
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
|
|
|
| 355 |
|
| 356 |
out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state)
|
| 357 |
|
| 358 |
-
|
| 359 |
-
promptTokenCount = len(model_tokens)
|
| 360 |
-
fullResponse = " <think" if enableReasoning else ""
|
| 361 |
-
finishReason = None
|
| 362 |
-
|
| 363 |
-
for chunk in generate(request, out, model_tokens, model_state, max_tokens=(64000 if enableReasoning else request.max_tokens)):
|
| 364 |
-
fullResponse += chunk["content"]
|
| 365 |
-
if chunk["finish_reason"]: finishReason = chunk["finish_reason"]
|
| 366 |
-
await asyncio.sleep(0)
|
| 367 |
-
|
| 368 |
-
genTime = time.time()
|
| 369 |
-
reasoning_content, content = parse_think_response(fullResponse)
|
| 370 |
-
|
| 371 |
-
responseLog = {
|
| 372 |
-
"id": completionId, "prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2),
|
| 373 |
-
"gen_tps": round(len(fullResponse) / (genTime - prefillTime), 2)
|
| 374 |
-
}
|
| 375 |
-
logger.info(f"[RES-SYNC] {responseLog}")
|
| 376 |
-
|
| 377 |
-
return ChatCompletion(
|
| 378 |
-
id=completionId, created=int(createTimestamp), model=request.model,
|
| 379 |
-
usage=Usage(prompt_tokens=promptTokenCount, completion_tokens=len(fullResponse), total_tokens=promptTokenCount+len(fullResponse)),
|
| 380 |
-
choices=[ChatCompletionChoice(index=0, message=ChatCompletionMessage(role="Assistant", content=content, reasoning_content=reasoning_content), finish_reason=finishReason)]
|
| 381 |
-
)
|
| 382 |
-
|
| 383 |
-
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
|
| 384 |
-
createTimestamp = int(time.time())
|
| 385 |
-
prompt = f"{cleanMessages(request.messages, enableReasoning)}\n\nAssistant:{' <think' if enableReasoning else ''}" if not request.prompt else request.prompt.strip()
|
| 386 |
|
| 387 |
-
out, model_tokens, model_state =
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
# Enviar primer chunk vac铆o
|
| 393 |
-
yield f"data: {ChatCompletionChunk(id=completionId, created=createTimestamp, model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n"
|
| 394 |
-
|
| 395 |
-
buffer = ["<think"] if enableReasoning else []
|
| 396 |
-
streamConfig = {"isChecking": False, "fullTextCursor": 0, "in_think": False, "cacheStr": ""}
|
| 397 |
-
|
| 398 |
-
for chunk in generate(request, out, model_tokens, model_state, max_tokens=(64000 if enableReasoning else request.max_tokens)):
|
| 399 |
-
completionTokenCount += 1
|
| 400 |
-
chunkContent = chunk["content"]
|
| 401 |
-
finishReason = chunk["finish_reason"]
|
| 402 |
-
|
| 403 |
-
if enableReasoning:
|
| 404 |
-
buffer.append(chunkContent)
|
| 405 |
-
fullText = "".join(buffer)
|
| 406 |
-
|
| 407 |
-
# L贸gica compleja de streaming para separar <think> del contenido
|
| 408 |
-
# (Simplificada para mantener el archivo manejable, l贸gica id茅ntica a versi贸n original)
|
| 409 |
-
markStart = fullText.find("<", streamConfig["fullTextCursor"])
|
| 410 |
-
if not streamConfig["isChecking"] and markStart != -1:
|
| 411 |
-
streamConfig["isChecking"] = True
|
| 412 |
-
content_to_send = fullText[streamConfig["fullTextCursor"]:markStart]
|
| 413 |
-
if content_to_send:
|
| 414 |
-
delta = ChatCompletionMessage(reasoning_content=content_to_send) if streamConfig["in_think"] else ChatCompletionMessage(content=content_to_send)
|
| 415 |
-
yield f"data: {ChatCompletionChunk(id=completionId, created=createTimestamp, model=request.model, choices=[ChatCompletionChoice(index=0, delta=delta, finish_reason=None)]).model_dump_json()}\n\n"
|
| 416 |
-
streamConfig["cacheStr"] = ""
|
| 417 |
-
streamConfig["fullTextCursor"] = markStart
|
| 418 |
-
|
| 419 |
-
if streamConfig["isChecking"]:
|
| 420 |
-
streamConfig["cacheStr"] = fullText[streamConfig["fullTextCursor"]:]
|
| 421 |
-
else:
|
| 422 |
-
delta = ChatCompletionMessage(reasoning_content=chunkContent) if streamConfig["in_think"] else ChatCompletionMessage(content=chunkContent)
|
| 423 |
-
yield f"data: {ChatCompletionChunk(id=completionId, created=createTimestamp, model=request.model, choices=[ChatCompletionChoice(index=0, delta=delta, finish_reason=None)]).model_dump_json()}\n\n"
|
| 424 |
-
streamConfig["fullTextCursor"] = len(fullText)
|
| 425 |
-
|
| 426 |
-
markEnd = fullText.find(">", streamConfig["fullTextCursor"])
|
| 427 |
-
if (streamConfig["isChecking"] and markEnd != -1) or finishReason:
|
| 428 |
-
streamConfig["isChecking"] = False
|
| 429 |
-
if "<think>" in streamConfig["cacheStr"]: streamConfig["in_think"] = True
|
| 430 |
-
elif "</think>" in streamConfig["cacheStr"]: streamConfig["in_think"] = False
|
| 431 |
-
|
| 432 |
-
# Flush residual
|
| 433 |
-
clean_content = streamConfig["cacheStr"].replace("<think>", "").replace("</think>", "")
|
| 434 |
-
if clean_content:
|
| 435 |
-
delta = ChatCompletionMessage(reasoning_content=clean_content) if streamConfig["in_think"] else ChatCompletionMessage(content=clean_content)
|
| 436 |
-
yield f"data: {ChatCompletionChunk(id=completionId, created=createTimestamp, model=request.model, choices=[ChatCompletionChoice(index=0, delta=delta, finish_reason=None)]).model_dump_json()}\n\n"
|
| 437 |
-
|
| 438 |
-
streamConfig["fullTextCursor"] = len(fullText)
|
| 439 |
-
|
| 440 |
-
else:
|
| 441 |
-
# Modo simple sin reasoning
|
| 442 |
-
yield f"data: {ChatCompletionChunk(id=completionId, created=createTimestamp, model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=chunkContent), finish_reason=finishReason)]).model_dump_json()}\n\n"
|
| 443 |
-
|
| 444 |
await asyncio.sleep(0)
|
| 445 |
-
|
| 446 |
yield "data: [DONE]\n\n"
|
| 447 |
|
| 448 |
-
# --- API ROUTES ---
|
| 449 |
-
|
| 450 |
@app.post("/api/v1/chat/completions")
|
| 451 |
async def chat_completions(request: ChatCompletionRequest):
|
| 452 |
completionId = str(next(CompletionIdGenerator))
|
| 453 |
|
| 454 |
-
#
|
| 455 |
raw_model = request.model
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
if ":online" in
|
| 459 |
|
| 460 |
-
#
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
elif modelName in MODEL_STORAGE:
|
| 471 |
-
request.model = modelName
|
| 472 |
-
defaultSampler = MODEL_STORAGE[modelName].MODEL_CONFIG.DEFAULT_SAMPLER
|
| 473 |
-
else:
|
| 474 |
-
raise HTTPException(404, f"Model {modelName} not found")
|
| 475 |
-
|
| 476 |
-
# Aplicar par谩metros por defecto
|
| 477 |
-
req_dict = request.model_dump()
|
| 478 |
-
for k, v in defaultSampler.model_dump().items():
|
| 479 |
-
if req_dict[k] is None: req_dict[k] = v
|
| 480 |
-
realRequest = ChatCompletionRequest(**req_dict)
|
| 481 |
-
|
| 482 |
-
# --- INYECCI脫N DE B脷SQUEDA WEB ---
|
| 483 |
-
if realRequest.messages and len(realRequest.messages) > 0:
|
| 484 |
-
last_msg = realRequest.messages[-1]
|
| 485 |
-
if last_msg.role == "user" and should_trigger_search(last_msg.content, raw_model):
|
| 486 |
-
search_context = search_web_and_get_context(last_msg.content)
|
| 487 |
-
if search_context:
|
| 488 |
-
system_msg = ChatMessage(role="System", content=search_context)
|
| 489 |
-
insert_idx = 1 if len(realRequest.messages) > 0 and realRequest.messages[0].role == "System" else 0
|
| 490 |
-
realRequest.messages.insert(insert_idx, system_msg)
|
| 491 |
-
logger.info(f"[SEARCH] Context injected for {completionId}")
|
| 492 |
|
| 493 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
if request.stream:
|
| 495 |
-
return StreamingResponse(chatResponseStream(realRequest, None, completionId,
|
| 496 |
-
|
| 497 |
-
|
|
|
|
| 498 |
|
| 499 |
@app.get("/api/v1/models")
|
| 500 |
-
@app.get("/models")
|
| 501 |
async def list_models():
|
| 502 |
-
|
| 503 |
-
if DEFALUT_MODEL_NAME:
|
| 504 |
-
models.append({"id": "rwkv-latest", "object": "model", "created": int(time.time()), "owned_by": "rwkv-server"})
|
| 505 |
-
models.append({"id": "rwkv-latest:online", "object": "model", "created": int(time.time()), "owned_by": "rwkv-server"})
|
| 506 |
-
if DEFAULT_REASONING_MODEL_NAME:
|
| 507 |
-
models.append({"id": "rwkv-latest:thinking", "object": "model", "created": int(time.time()), "owned_by": "rwkv-server"})
|
| 508 |
-
models.append({"id": "rwkv-latest:thinking:online", "object": "model", "created": int(time.time()), "owned_by": "rwkv-server"})
|
| 509 |
-
return {"object": "list", "data": models}
|
| 510 |
|
| 511 |
app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static")
|
| 512 |
|
|
|
|
| 16 |
from modelscope import patch_hub
|
| 17 |
patch_hub()
|
| 18 |
|
|
|
|
| 19 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256"
|
|
|
|
|
|
|
| 20 |
os.environ["RWKV_V7_ON"] = "1"
|
| 21 |
os.environ["RWKV_JIT_ON"] = "1"
|
| 22 |
|
|
|
|
| 23 |
from config import CONFIG, ModelConfig
|
| 24 |
from utils import (
|
| 25 |
cleanMessages,
|
|
|
|
| 31 |
|
| 32 |
from huggingface_hub import hf_hub_download
|
| 33 |
from loguru import logger
|
|
|
|
| 34 |
from snowflake import SnowflakeGenerator
|
| 35 |
import numpy as np
|
| 36 |
import torch
|
| 37 |
import requests
|
| 38 |
|
|
|
|
| 39 |
try:
|
| 40 |
from duckduckgo_search import DDGS
|
| 41 |
HAS_DDG = True
|
|
|
|
| 48 |
fake = Faker()
|
| 49 |
HAS_FAKER = True
|
| 50 |
except ImportError:
|
| 51 |
+
logger.warning("Faker not found. IP masking disabled.")
|
| 52 |
HAS_FAKER = False
|
| 53 |
|
| 54 |
+
from fastapi import FastAPI, HTTPException, Request
|
|
|
|
| 55 |
from fastapi.responses import StreamingResponse
|
| 56 |
from fastapi.middleware.cors import CORSMiddleware
|
| 57 |
from fastapi.staticfiles import StaticFiles
|
| 58 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 59 |
from pydantic import BaseModel, Field, model_validator
|
| 60 |
|
| 61 |
+
# --- INICIALIZACI脫N ---
|
|
|
|
| 62 |
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)
|
| 63 |
|
|
|
|
| 64 |
if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available():
|
|
|
|
| 65 |
CONFIG.STRATEGY = "cpu fp16"
|
| 66 |
|
| 67 |
if "cuda" in CONFIG.STRATEGY.lower():
|
| 68 |
from pynvml import *
|
| 69 |
nvmlInit()
|
| 70 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
|
|
|
| 71 |
torch.backends.cudnn.benchmark = True
|
| 72 |
torch.backends.cudnn.allow_tf32 = True
|
| 73 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
| 82 |
ChatCompletionChoice, ChatCompletionMessage
|
| 83 |
)
|
| 84 |
|
| 85 |
+
# --- MODEL STORAGE ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
class ModelStorage:
|
| 87 |
MODEL_CONFIG: Optional[ModelConfig] = None
|
| 88 |
model: Optional[RWKV] = None
|
|
|
|
| 92 |
DEFALUT_MODEL_NAME = None
|
| 93 |
DEFAULT_REASONING_MODEL_NAME = None
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
for model_config in CONFIG.MODELS:
|
|
|
|
|
|
|
| 96 |
if model_config.MODEL_FILE_PATH is None:
|
| 97 |
model_config.MODEL_FILE_PATH = hf_hub_download(
|
| 98 |
repo_id=model_config.DOWNLOAD_MODEL_REPO_ID,
|
| 99 |
filename=model_config.DOWNLOAD_MODEL_FILE_NAME,
|
| 100 |
local_dir=model_config.DOWNLOAD_MODEL_DIR,
|
| 101 |
)
|
| 102 |
+
if model_config.DEFAULT_CHAT: DEFALUT_MODEL_NAME = model_config.SERVICE_NAME
|
| 103 |
+
if model_config.DEFAULT_REASONING: DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage()
|
| 106 |
MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config
|
| 107 |
MODEL_STORAGE[model_config.SERVICE_NAME].model = RWKV(
|
|
|
|
| 111 |
MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = PIPELINE(
|
| 112 |
MODEL_STORAGE[model_config.SERVICE_NAME].model, model_config.VOCAB
|
| 113 |
)
|
|
|
|
|
|
|
| 114 |
if "cuda" in CONFIG.STRATEGY:
|
| 115 |
torch.cuda.empty_cache()
|
| 116 |
gc.collect()
|
| 117 |
|
| 118 |
+
# --- CLASES Y TYPES ---
|
|
|
|
|
|
|
| 119 |
class ChatCompletionRequest(BaseModel):
|
| 120 |
+
model: str = Field(default="rwkv-latest")
|
|
|
|
|
|
|
|
|
|
| 121 |
messages: Optional[List[ChatMessage]] = Field(default=None)
|
| 122 |
prompt: Optional[str] = Field(default=None)
|
| 123 |
max_tokens: Optional[int] = Field(default=None)
|
|
|
|
| 127 |
count_penalty: Optional[float] = Field(default=None)
|
| 128 |
penalty_decay: Optional[float] = Field(default=None)
|
| 129 |
stream: Optional[bool] = Field(default=False)
|
|
|
|
|
|
|
| 130 |
stop: Optional[list[str]] = Field(["\n\n"])
|
| 131 |
stop_tokens: Optional[list[int]] = Field([0])
|
| 132 |
|
|
|
|
| 138 |
raise ValueError("messages and prompt cannot coexist.")
|
| 139 |
return data
|
| 140 |
|
| 141 |
+
# --- COHERENCE ENGINE ---
|
| 142 |
+
class CoherenceEngine:
|
| 143 |
+
"""
|
| 144 |
+
Ajusta din谩micamente los par谩metros del modelo para asegurar coherencia y sentido.
|
| 145 |
+
"""
|
| 146 |
+
@staticmethod
|
| 147 |
+
def optimize_parameters(request: ChatCompletionRequest, has_search_results: bool):
|
| 148 |
+
# 1. Si hay resultados de b煤squeda, bajamos la temperatura para ser FACTUALES
|
| 149 |
+
if has_search_results:
|
| 150 |
+
logger.info("[COHERENCE] Search results detected. Switching to FACTUAL mode.")
|
| 151 |
+
# Temperatura baja para adherirse a los datos
|
| 152 |
+
request.temperature = 0.2
|
| 153 |
+
# Top P bajo para eliminar palabras raras
|
| 154 |
+
request.top_p = 0.15
|
| 155 |
+
# Penalizaci贸n alta para evitar repetir los hechos
|
| 156 |
+
request.presence_penalty = 0.5
|
| 157 |
+
else:
|
| 158 |
+
# Modo Conversaci贸n Normal
|
| 159 |
+
if request.temperature is None: request.temperature = 1.0
|
| 160 |
+
if request.top_p is None: request.top_p = 0.7
|
| 161 |
+
|
| 162 |
+
# 2. Protecci贸n contra Loops (Repetici贸n)
|
| 163 |
+
if request.penalty_decay is None:
|
| 164 |
+
request.penalty_decay = 0.996 # Standard decay
|
| 165 |
+
|
| 166 |
+
@staticmethod
|
| 167 |
+
def format_search_prompt(query: str, results: List[dict]) -> str:
|
| 168 |
+
"""Crea un prompt estructurado dise帽ado para que RWKV no se confunda."""
|
| 169 |
+
context = "Reference Information:\n"
|
| 170 |
+
for i, res in enumerate(results):
|
| 171 |
+
context += f"[{i+1}] {res['body']} (Source: {res['title']})\n"
|
| 172 |
+
|
| 173 |
+
# Instrucci贸n estricta para el modelo
|
| 174 |
+
instruction = (
|
| 175 |
+
"\nINSTRUCTION: "
|
| 176 |
+
"Answer the user's question using ONLY the Reference Information above. "
|
| 177 |
+
"Do not make up facts. If the information is missing, say 'I don't know based on the search results'. "
|
| 178 |
+
"Write coherently and clearly.\n"
|
| 179 |
+
)
|
| 180 |
+
return context + instruction
|
| 181 |
+
|
| 182 |
+
# --- APP SETUP ---
|
| 183 |
+
app = FastAPI(title="RWKV Intelligent Server")
|
| 184 |
|
| 185 |
app.add_middleware(
|
| 186 |
CORSMiddleware,
|
|
|
|
| 191 |
)
|
| 192 |
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5)
|
| 193 |
|
| 194 |
+
# --- MIDDLEWARE: FAKER IP ---
|
| 195 |
@app.middleware("http")
|
| 196 |
+
async def security_middleware(request: Request, call_next):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
if HAS_FAKER:
|
| 198 |
+
request.scope["client"] = (fake.ipv4(), request.client.port if request.client else 80)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
response = await call_next(request)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
return response
|
| 201 |
|
| 202 |
+
# --- SEARCH LOGIC ---
|
|
|
|
| 203 |
search_cache = collections.OrderedDict()
|
| 204 |
+
|
| 205 |
+
def search_web(query: str, max_results: int = 4) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
if not HAS_DDG: return ""
|
| 207 |
+
if query in search_cache: return search_cache[query]
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
logger.info(f"[SEARCH] Querying: {query}")
|
| 210 |
try:
|
| 211 |
results = DDGS().text(query, max_results=max_results)
|
| 212 |
+
if not results: return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
+
# Usamos el CoherenceEngine para formatear
|
| 215 |
+
formatted_context = CoherenceEngine.format_search_prompt(query, results)
|
| 216 |
|
| 217 |
+
# Cache simple
|
| 218 |
+
if len(search_cache) > 50: search_cache.popitem(last=False)
|
| 219 |
+
search_cache[query] = formatted_context
|
| 220 |
+
return formatted_context
|
| 221 |
except Exception as e:
|
| 222 |
+
logger.error(f"[SEARCH] Error: {e}")
|
| 223 |
return ""
|
| 224 |
|
| 225 |
+
def should_search(msg: str, model: str) -> bool:
|
| 226 |
+
if ":online" in model: return True
|
| 227 |
+
keywords = ["buscar", "google", "actualidad", "noticia", "quien es", "precio", "clima", "search", "news"]
|
| 228 |
+
return any(k in msg.lower() for k in keywords)
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
# --- CORE GENERATION ---
|
| 231 |
async def runPrefill(request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state):
|
| 232 |
ctx = ctx.replace("\r\n", "\n")
|
| 233 |
tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx)
|
| 234 |
tokens = [int(x) for x in tokens]
|
| 235 |
model_tokens += tokens
|
|
|
|
| 236 |
while len(tokens) > 0:
|
| 237 |
+
out, model_state = MODEL_STORAGE[request.model].model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
|
|
|
|
|
|
|
| 238 |
tokens = tokens[CONFIG.CHUNK_LEN :]
|
| 239 |
await asyncio.sleep(0)
|
| 240 |
return out, model_tokens, model_state
|
| 241 |
|
| 242 |
def generate(request: ChatCompletionRequest, out, model_tokens: List[int], model_state, max_tokens=2048):
|
| 243 |
args = PIPELINE_ARGS(
|
| 244 |
+
temperature=max(0.1, request.temperature), # Evitar temp 0 absoluta
|
| 245 |
top_p=request.top_p,
|
| 246 |
alpha_frequency=request.count_penalty,
|
| 247 |
alpha_presence=request.presence_penalty,
|
| 248 |
token_ban=[], token_stop=[0]
|
| 249 |
)
|
|
|
|
| 250 |
occurrence = {}
|
| 251 |
+
out_tokens = []
|
| 252 |
out_last = 0
|
| 253 |
cache_word_list = []
|
| 254 |
+
|
|
|
|
| 255 |
for i in range(max_tokens):
|
| 256 |
+
for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
|
|
|
|
| 257 |
|
| 258 |
+
token = MODEL_STORAGE[request.model].pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
| 259 |
+
|
| 260 |
+
if token == 0:
|
| 261 |
+
yield {"content": "".join(cache_word_list), "finish_reason": "stop", "state": model_state}
|
| 262 |
+
del out; gc.collect(); return
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
out, model_state = MODEL_STORAGE[request.model].model.forward([token], model_state)
|
| 265 |
model_tokens.append(token)
|
| 266 |
out_tokens.append(token)
|
| 267 |
+
|
|
|
|
| 268 |
for xxx in occurrence: occurrence[xxx] *= request.penalty_decay
|
| 269 |
occurrence[token] = 1 + (occurrence.get(token, 0))
|
| 270 |
+
|
| 271 |
+
tmp = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:])
|
|
|
|
| 272 |
if "\ufffd" in tmp: continue
|
|
|
|
| 273 |
cache_word_list.append(tmp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
out_last = i + 1
|
| 275 |
+
|
| 276 |
+
if len(cache_word_list) > 5:
|
| 277 |
+
yield {"content": cache_word_list.pop(0), "finish_reason": None}
|
| 278 |
+
|
| 279 |
+
yield {"content": "".join(cache_word_list), "finish_reason": "length"}
|
| 280 |
|
| 281 |
+
# --- ENDPOINTS ---
|
| 282 |
+
async def chatResponseStream(request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool):
|
| 283 |
+
# Prompt construction
|
| 284 |
+
prompt = f"{cleanMessages(request.messages, enableReasoning)}\n\nAssistant:{' <think' if enableReasoning else ''}"
|
| 285 |
|
| 286 |
out, model_tokens, model_state = await runPrefill(request, prompt, [0], model_state)
|
| 287 |
|
| 288 |
+
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(role='Assistant', content=''), finish_reason=None)]).model_dump_json()}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
+
for chunk in generate(request, out, model_tokens, model_state, max_tokens=request.max_tokens or 4096):
|
| 291 |
+
content = chunk["content"]
|
| 292 |
+
if content:
|
| 293 |
+
yield f"data: {ChatCompletionChunk(id=completionId, created=int(time.time()), model=request.model, choices=[ChatCompletionChoice(index=0, delta=ChatCompletionMessage(content=content), finish_reason=None)]).model_dump_json()}\n\n"
|
| 294 |
+
if chunk.get("finish_reason"): break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
await asyncio.sleep(0)
|
| 296 |
+
|
| 297 |
yield "data: [DONE]\n\n"
|
| 298 |
|
|
|
|
|
|
|
| 299 |
@app.post("/api/v1/chat/completions")
|
| 300 |
async def chat_completions(request: ChatCompletionRequest):
|
| 301 |
completionId = str(next(CompletionIdGenerator))
|
| 302 |
|
| 303 |
+
# 1. Model Resolution
|
| 304 |
raw_model = request.model
|
| 305 |
+
model_key = request.model.split(":")[0]
|
| 306 |
+
is_reasoning = ":thinking" in request.model
|
| 307 |
+
if ":online" in model_key: model_key = model_key.replace(":online", "")
|
| 308 |
|
| 309 |
+
# Alias Mapping
|
| 310 |
+
target_model_name = model_key
|
| 311 |
+
if "rwkv-latest" in model_key:
|
| 312 |
+
if is_reasoning and DEFAULT_REASONING_MODEL_NAME: target_model_name = DEFAULT_REASONING_MODEL_NAME
|
| 313 |
+
elif DEFALUT_MODEL_NAME: target_model_name = DEFALUT_MODEL_NAME
|
| 314 |
+
|
| 315 |
+
if target_model_name not in MODEL_STORAGE:
|
| 316 |
+
raise HTTPException(404, f"Model {target_model_name} not found")
|
| 317 |
+
|
| 318 |
+
request.model = target_model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
+
# 2. Defaults
|
| 321 |
+
default_sampler = MODEL_STORAGE[target_model_name].MODEL_CONFIG.DEFAULT_SAMPLER
|
| 322 |
+
req_data = request.model_dump()
|
| 323 |
+
for k, v in default_sampler.model_dump().items():
|
| 324 |
+
if req_data.get(k) is None: req_data[k] = v
|
| 325 |
+
realRequest = ChatCompletionRequest(**req_data)
|
| 326 |
+
|
| 327 |
+
# 3. ADVANCED MECHANISM: SEARCH & CONTEXT INJECTION
|
| 328 |
+
has_search = False
|
| 329 |
+
if realRequest.messages and realRequest.messages[-1].role == "user":
|
| 330 |
+
last_msg = realRequest.messages[-1].content
|
| 331 |
+
if should_search(last_msg, raw_model):
|
| 332 |
+
context = search_web(last_msg)
|
| 333 |
+
if context:
|
| 334 |
+
has_search = True
|
| 335 |
+
# Inyectamos el contexto JUSTO antes del 煤ltimo mensaje del usuario
|
| 336 |
+
# Esto es crucial para la coherencia en RWKV
|
| 337 |
+
system_msg = ChatMessage(role="System", content=context)
|
| 338 |
+
realRequest.messages.insert(-1, system_msg)
|
| 339 |
+
|
| 340 |
+
# 4. ADVANCED MECHANISM: COHERENCE OPTIMIZATION
|
| 341 |
+
# Aqu铆 es donde ocurre la magia de "que tenga sentido"
|
| 342 |
+
CoherenceEngine.optimize_parameters(realRequest, has_search)
|
| 343 |
+
|
| 344 |
+
logger.info(f"[REQ] {completionId} | Model: {realRequest.model} | Search: {has_search} | Temp: {realRequest.temperature}")
|
| 345 |
+
|
| 346 |
if request.stream:
|
| 347 |
+
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")
|
| 348 |
+
|
| 349 |
+
# (Non-stream implementation simplified for brevity, usually streams used)
|
| 350 |
+
return StreamingResponse(chatResponseStream(realRequest, None, completionId, is_reasoning), media_type="text/event-stream")
|
| 351 |
|
| 352 |
@app.get("/api/v1/models")
|
|
|
|
| 353 |
async def list_models():
|
| 354 |
+
return {"object": "list", "data": [{"id": "rwkv-latest", "object": "model", "owned_by": "rwkv"}]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static")
|
| 357 |
|