Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
|
@@ -1,16 +1,27 @@
|
|
| 1 |
from transformers import pipeline
|
| 2 |
|
| 3 |
-
#
|
| 4 |
-
translator = pipeline("text-generation", model="JenniferHJF/qwen1.5-emoji-finetuned", max_new_tokens=
|
| 5 |
-
classifier = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-offensive")
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
|
| 3 |
+
# Step 1: 初始化翻译模型(Qwen 微调模型)
|
| 4 |
+
translator = pipeline("text-generation", model="JenniferHJF/qwen1.5-emoji-finetuned", max_new_tokens=64)
|
|
|
|
| 5 |
|
| 6 |
+
# Step 2: 初始化多个分类模型
|
| 7 |
+
available_models = {
|
| 8 |
+
"Hate Speech RoBERTa": "facebook/roberta-hate-speech-dynabench",
|
| 9 |
+
"Twitter Offensive": "cardiffnlp/twitter-roberta-base-offensive",
|
| 10 |
+
"Chinese Sentiment": "uer/roberta-base-finetuned-chinanews-chinese"
|
| 11 |
+
}
|
| 12 |
|
| 13 |
+
classifier_pipes = {
|
| 14 |
+
name: pipeline("text-classification", model=repo, truncation=True)
|
| 15 |
+
for name, repo in available_models.items()
|
| 16 |
+
}
|
| 17 |
|
| 18 |
+
# Step 3: 主处理函数
|
| 19 |
+
def classify_emoji_text(text, selected_model):
|
| 20 |
+
# 翻译表情
|
| 21 |
+
translated_output = translator(f"请将以下句子中的 emoji 和谐音表达翻译为中文:{text}", return_full_text=False)
|
| 22 |
+
translated = translated_output[0]["generated_text"].strip()
|
| 23 |
+
|
| 24 |
+
# 分类模型处理
|
| 25 |
+
classifier = classifier_pipes[selected_model]
|
| 26 |
+
result = classifier(translated)[0]
|
| 27 |
+
return translated, result["label"], result["score"]
|