Spaces:
Paused
Paused
File size: 14,081 Bytes
d5f2660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
"""VLM client with file-based session history - supports both local GGUF and HF Spaces"""
import aiohttp
import asyncio
import json
import base64
import os
from typing import Optional, Dict, Any, AsyncGenerator
from .logger import setup_logger
from .config import IS_HF_SPACE, MAX_CONCURRENT_USERS
from .session_manager import session_manager
# Conditional imports based on environment
if not IS_HF_SPACE:
from .config import SERVER_URL, REQUEST_TIMEOUT, CONNECT_TIMEOUT
SEMAPHORE = asyncio.Semaphore(MAX_CONCURRENT_USERS)
logger = setup_logger(__name__)
if IS_HF_SPACE:
logger.info("π Running in HF Spaces mode (transformers)")
else:
logger.info("π» Running in local GGUF mode (llama-cpp)")
def get_active_sessions() -> list:
"""Get list of currently active sessions"""
return session_manager.get_active_sessions()
def cleanup_expired_sessions() -> int:
"""Cleanup sessions that exceeded TTL"""
return session_manager.cleanup_expired_sessions()
async def _encode_image(path: str) -> tuple[str, str]:
"""
Encode image to base64 and detect format
Returns: (base64_string, mime_type)
"""
def _encode():
if not os.path.exists(path):
logger.warning(f"Image not found: {path}")
return None, None
with open(path, "rb") as f:
img_bytes = f.read()
# Detect image format from magic bytes
if img_bytes.startswith(b'\x89PNG'):
mime_type = "image/png"
elif img_bytes.startswith(b'\xFF\xD8\xFF'):
mime_type = "image/jpeg"
elif img_bytes.startswith(b'GIF'):
mime_type = "image/gif"
elif img_bytes.startswith(b'RIFF') and b'WEBP' in img_bytes[:12]:
mime_type = "image/webp"
else:
mime_type = "image/jpeg" # Default fallback
return base64.b64encode(img_bytes).decode(), mime_type
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, _encode)
def _extract_text_from_content(content: Any) -> str:
"""Extract text from message content (handles string/dict/list formats)"""
if isinstance(content, str):
return content
elif isinstance(content, dict):
return content.get("text", "")
elif isinstance(content, list):
for item in content:
if isinstance(item, dict) and item.get("type") == "text":
return item.get("text", "")
return ""
def _find_image_in_context_window(all_messages: list, max_messages: int, session_id: str) -> Optional[str]:
"""
Find most recent image that will remain in context window after adding new messages
Args:
all_messages: Current message history
max_messages: Maximum messages to keep in window
session_id: Session identifier for logging
Returns:
Path to image file or None
"""
# Calculate which messages will remain after adding current message + assistant response
if len(all_messages) >= max_messages - 1:
# Keep only messages that will survive: drop oldest 2 positions
messages_that_will_remain = all_messages[2:] if len(all_messages) >= 2 else all_messages
else:
messages_that_will_remain = all_messages
# Find most recent image in messages that will remain
for msg in reversed(messages_that_will_remain):
img_path = msg.get("image_path")
if img_path and os.path.exists(img_path):
logger.info(f"π Session {session_id[:8]} | Found image in context window")
return img_path
# Check if there was an image that got dropped
if len(all_messages) >= max_messages - 1:
for msg in all_messages[:2]: # Check dropped messages
if msg.get("image_path"):
logger.info(f"ποΈ Session {session_id[:8]} | Image outside context window (will be deleted)")
return None
def _build_history_messages(session_id: str) -> list[Dict[str, Any]]:
"""Build API message history from session files"""
messages = session_manager.get_messages_for_context(session_id)
return [{"role": msg["role"], "content": msg["content"]} for msg in messages]
def _find_most_recent_image(session_id: str) -> Optional[str]:
"""Find most recent image in session history"""
messages = session_manager.get_messages_for_context(session_id)
for msg in reversed(messages):
if msg.get("image_path") and os.path.exists(msg["image_path"]):
return msg["image_path"]
return None
async def respond_stream_hf(message, history, system_message: str, max_tokens: int, temperature: float, top_p: float, session_id: Optional[str] = None, model_choice: str = "Base (General)") -> AsyncGenerator[str, None]:
"""
HF Spaces streaming response using transformers
Args:
message: Current user message (text or dict with text/files)
history: Gradio history
system_message: System prompt
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
session_id: Optional session identifier
model_choice: Model selection string
"""
from .config import HF_BASE_MODEL, HF_FT_MODEL
from .server_hf import run_hf_inference
# Map model choice to model ID
model_id = HF_FT_MODEL if model_choice == "Fine-Tuned (BraTS)" else HF_BASE_MODEL
# Generate session ID if not provided
if session_id is None:
session_id = str(id(history)) if history is not None else "default"
# Log request
model_type = "FT" if model_choice == "Fine-Tuned (BraTS)" else "Base"
has_image = isinstance(message, dict) and message.get("files")
img_status = "with image" if has_image else "text only"
logger.info(f"π€ HF Spaces | Session: {session_id[:8]} | Model: {model_type} | {img_status}")
# Convert Gradio history to HF format
hf_history = []
for item in history:
role = item.get("role", "user")
content = item.get("content", "")
# Handle multimodal content
if isinstance(content, list):
# Already in multimodal format
hf_history.append({"role": role, "content": content})
elif isinstance(content, str):
hf_history.append({"role": role, "content": content})
else:
# Image tuple format from Gradio
hf_history.append({"role": role, "content": content})
# Stream response from HF inference (sync generator in async context)
try:
# Run sync generator in executor to avoid blocking
loop = asyncio.get_event_loop()
gen = run_hf_inference(message, hf_history, system_message, max_tokens, model_id)
# Yield chunks as they come
def get_next(g):
try:
return next(g), False
except StopIteration:
return None, True
while True:
chunk, done = await loop.run_in_executor(None, get_next, gen)
if done:
break
if chunk is not None:
yield chunk
# Small delay to allow UI to update
await asyncio.sleep(0.01)
except Exception as e:
logger.error(f"β HF inference error: {e}")
yield f"Error: {str(e)}"
async def respond_stream(message, history, system_message: str, max_tokens: int, temperature: float, top_p: float, session_id: Optional[str] = None, server_url: Optional[str] = None, model_choice: str = "Base (General)") -> AsyncGenerator[str, None]:
"""
Stream VLM response - routes to HF Spaces or local GGUF based on environment
Args:
message: Current user message (text or dict with text/files)
history: Gradio history (used to extract session info)
system_message: System prompt
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
session_id: Optional session identifier
server_url: Optional custom server URL (local only)
model_choice: Model selection string
"""
# Route to appropriate inference method
if IS_HF_SPACE:
async for chunk in respond_stream_hf(message, history, system_message, max_tokens, temperature, top_p, session_id, model_choice):
yield chunk
return
# Local GGUF inference below
# Cleanup expired sessions periodically
cleanup_expired_sessions()
# Generate session ID from history object if not provided
if session_id is None:
session_id = str(id(history)) if history is not None else "default"
# Ensure session exists
if not session_manager.session_exists(session_id):
session_manager.create_session(session_id)
session_manager.update_activity(session_id)
active_count = len(get_active_sessions())
history_msgs = session_manager.get_session_history(session_id)
# Extract text from current message
prompt = _extract_text_from_content(message.get("text") if isinstance(message, dict) else message)
# Handle new image upload
current_image_path = None
has_image = isinstance(message, dict) and message.get("files") and len(message["files"]) > 0
if has_image:
current_image_path = message["files"][0]
# Build conversation history from session files
all_messages = session_manager.get_messages_for_context(session_id)
# Log request summary
img_status = "with image" if has_image else "text only"
logger.info(f"Request | Session: {session_id[:8]} | {img_status} | History: {len(history_msgs)} msgs")
# Determine which image to use (new upload or cached from history)
from .config import HISTORY_EXCHANGES
max_messages = HISTORY_EXCHANGES * 2
if current_image_path:
image_to_use = current_image_path
else:
image_to_use = _find_image_in_context_window(all_messages, max_messages, session_id)
# Build API messages from history
messages = [{"role": msg["role"], "content": msg["content"]} for msg in all_messages]
# Build current message with or without image
if image_to_use:
image_b64, mime_type = await _encode_image(image_to_use)
if image_b64:
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{image_b64}"}},
{"type": "text", "text": prompt}
]
})
if current_image_path:
logger.info(f"π€ Sending WITH NEW IMAGE ({mime_type})")
else:
logger.info(f"π€ Sending WITH IMAGE from history ({mime_type})")
else:
messages.append({"role": "user", "content": prompt})
logger.info(f"π€ TEXT ONLY (image load failed)")
else:
messages.append({"role": "user", "content": prompt})
logger.info(f"π€ TEXT ONLY (no image in window)")
# Count images in payload
image_count = sum(1 for msg in messages if isinstance(msg.get("content"), list))
logger.info(f"π Sending: {len(messages)} msgs | {image_count} image(s)")
payload = {
"model": "medgemma",
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": True
}
# Use custom server URL if provided, otherwise use default
target_url = server_url if server_url else SERVER_URL
try:
timeout = aiohttp.ClientTimeout(total=REQUEST_TIMEOUT, connect=CONNECT_TIMEOUT)
async with aiohttp.ClientSession(timeout=timeout) as session:
async with SEMAPHORE:
async with session.post(target_url, json=payload) as resp:
if resp.status != 200:
logger.error(f"β Server error: {resp.status}")
yield f"Error: {resp.status}"
return
full, token_count = "", 0
# Stream response chunks
async for line in resp.content:
text = line.decode().strip()
if not text.startswith('data: '):
continue
data = text[6:] # Remove 'data: ' prefix
if data == '[DONE]':
break
try:
obj = json.loads(data)
chunk = obj.get('choices', [{}])[0].get('delta', {}).get('content', '')
if chunk:
full += chunk
token_count += 1
yield full
except:
continue # Skip malformed chunks
# Handle empty response (context exceeded)
if token_count == 0:
error_msg = "β οΈ Context size exceeded. Please start a new conversation or reduce history."
logger.warning(f"β οΈ Session {session_id[:8]} | Context exceeded")
yield error_msg
else:
logger.info(f"β
COMPLETED | Session: {session_id[:8]} | Tokens: {token_count} | Active: {len(get_active_sessions())}")
# Save messages to session history
session_manager.add_message(session_id, "user", prompt, current_image_path)
session_manager.add_message(session_id, "assistant", full, None)
except Exception as e:
logger.error(f"β Exception: {e}")
yield f"Error: {e}" |