Spaces:
Paused
Paused
File size: 6,330 Bytes
d5f2660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
"""HF Spaces VLM inference using transformers (spaces.GPU decorator)"""
import os
import re
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
from .logger import setup_logger
from .config import HF_BASE_MODEL, HF_FT_MODEL, MAX_NUM_IMAGES
# Set DEVICE now that torch is imported after spaces
import src.config as config
if config.DEVICE is None:
config.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger = setup_logger(__name__)
# Preload both models at startup
models = {}
processors = {}
def load_model(model_id: str):
"""Load and cache a model"""
if model_id in models:
return
logger.info(f"π Preloading model: {model_id}")
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.bfloat16
)
model.generation_config.do_sample = True
models[model_id] = model
processors[model_id] = processor
logger.info(f"β
Model loaded: {model_id}")
# Load both models at module import
logger.info("π Initializing HF Spaces models...")
load_model(HF_BASE_MODEL)
load_model(HF_FT_MODEL)
logger.info("β
All models preloaded")
def count_files_in_new_message(paths: list[str]) -> int:
return len([path for path in paths if not path.endswith(".mp4")])
def count_files_in_history(history: list[dict]) -> int:
image_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
image_count += 1
return image_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
new_image_count = count_files_in_new_message(message["files"])
history_image_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
if image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
gr.Warning("The number of <image> tags in the text does not match the number of images.")
return False
return True
def process_interleaved_images(message: dict) -> list[dict]:
logger.debug(f"{message['files']=}")
parts = re.split(r"(<image>)", message["text"])
logger.debug(f"{parts=}")
content = []
image_index = 0
for part in parts:
logger.debug(f"{part=}")
if part == "<image>":
content.append({"type": "image", "url": message["files"][image_index]})
logger.debug(f"file: {message['files'][image_index]}")
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
elif isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
logger.debug(f"{content=}")
return content
def process_new_user_message(message: dict) -> list[dict]:
if not message["files"]:
return [{"type": "text", "text": message["text"]}]
if "<image>" in message["text"]:
return process_interleaved_images(message)
return [
{"type": "text", "text": message["text"]},
*[{"type": "image", "url": path} for path in message["files"]],
]
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
else:
current_user_content.append({"type": "image", "url": content[0]})
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
return messages
@spaces.GPU(duration=120)
def run_hf_inference(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 2048, model_id: str = None) -> Iterator[str]:
"""
HF Spaces inference with @spaces.GPU decorator
Args:
message: Current message dict with 'text' and optional 'files'
history: Gradio chat history
system_prompt: System message
max_new_tokens: Max tokens to generate
model_id: Model identifier (HF_BASE_MODEL or HF_FT_MODEL)
"""
# Default to base model if not specified
if model_id is None:
model_id = HF_BASE_MODEL
if model_id not in models:
raise ValueError(f"Model {model_id} not preloaded.")
model = models[model_id]
processor = processors[model_id]
model_name = "Base" if model_id == HF_BASE_MODEL else "FT"
logger.info(f"π€ Using model: {model_name} ({model_id})")
if not validate_media_constraints(message, history):
yield ""
return
messages = []
if system_prompt:
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
messages.extend(process_history(history))
messages.append({"role": "user", "content": process_new_user_message(message)})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
max_new_tokens=max_new_tokens,
streamer=streamer,
do_sample=True,
temperature=1.0,
top_p=0.95,
top_k=64,
min_p=0.0,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output |