Spaces:
Paused
Paused
File size: 43,731 Bytes
d5f2660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
"""Medical AI models server (Classification, Detection, Segmentation)"""
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import os
import sys
import json
from datetime import datetime
import uvicorn
import warnings
import base64
from io import BytesIO
# Handle both direct execution and module import
if __name__ == "__main__":
# Direct execution: add parent directory to path
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.logger import setup_logger
from src.config import (
DOWNSAMPLE_FACTOR, MAX_BRAIN_POINTS, MAX_TUMOR_POINTS,
SLICE_OFFSETS_3, SLICE_OFFSETS_5
)
else:
# Module import: use relative imports
from .logger import setup_logger
from .config import (
DOWNSAMPLE_FACTOR, MAX_BRAIN_POINTS, MAX_TUMOR_POINTS,
SLICE_OFFSETS_3, SLICE_OFFSETS_5
)
warnings.filterwarnings("ignore")
logger = setup_logger(__name__)
app = FastAPI(title="Medical AI Models Server")
DETECTION_MODELS = {
'Blood_Cell': 'Models/Detection/Blood_Cell.onnx',
'Breast_Cancer': 'Models/Detection/Breast_Cancer.onnx',
'Fracture': 'Models/Detection/Fracture.onnx'
}
CLASSIFICATION_MODELS = {
'Brain_Tumor': 'Models/Classification/brain_tumor',
'Chest_X-Ray': 'Models/Classification/chest-xray',
'Lung_Cancer': 'Models/Classification/lung-cancer'
}
SEGMENTATION_MODELS = {
'brats': 'Models/Seg_3D/Brats.onnx'
}
class DetectionRequest(BaseModel):
image_path: str
model: str
class ClassificationRequest(BaseModel):
image_path: str
model: str
class SegmentationRequest(BaseModel):
case_path: str
model: str = "brats"
detection_models = {} # Cache for loaded YOLO detection models
classification_models_cache = {} # Cache for loaded classification models
def load_detection_models():
"""Pre-load YOLO detection models"""
from ultralytics import YOLO
for model_name, model_path in DETECTION_MODELS.items():
if os.path.exists(model_path):
detection_models[model_name] = YOLO(model_path, task='detect')
logger.info(f"Loaded detection model: {model_name}")
else:
logger.warning(f"Detection model not found: {model_path}")
def load_all_classification_models():
logger.info("Pre-loading classification models...")
for model_name, model_path in CLASSIFICATION_MODELS.items():
if os.path.exists(model_path):
try:
get_classification_model(model_name)
logger.info(f"Pre-loaded classification model: {model_name}")
except Exception as e:
logger.warning(f"Failed to pre-load {model_name}: {e}")
else:
logger.warning(f"Classification model not found: {model_path}")
def image_to_base64(image):
"""Convert PIL Image to base64"""
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def figure_to_base64(fig):
"""Convert matplotlib figure to base64"""
import matplotlib.pyplot as plt
buffered = BytesIO()
fig.savefig(buffered, format='PNG', dpi=150, bbox_inches='tight')
plt.close(fig)
buffered.seek(0)
return base64.b64encode(buffered.read()).decode()
def load_classification_imports():
"""Lazy load classification dependencies"""
try:
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from peft import PeftModel, PeftConfig
from pytorch_grad_cam import GradCAM, GradCAMPlusPlus, EigenCAM, LayerCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchvision.transforms import Compose, Normalize, Resize, CenterCrop, ToTensor
return {
'torch': torch, 'np': np, 'plt': plt, 'Image': Image,
'PeftModel': PeftModel, 'PeftConfig': PeftConfig,
'GradCAM': GradCAM, 'GradCAMPlusPlus': GradCAMPlusPlus,
'EigenCAM': EigenCAM, 'LayerCAM': LayerCAM,
'show_cam_on_image': show_cam_on_image,
'ClassifierOutputTarget': ClassifierOutputTarget,
'AutoImageProcessor': AutoImageProcessor,
'AutoModelForImageClassification': AutoModelForImageClassification,
'Compose': Compose, 'Normalize': Normalize, 'Resize': Resize,
'CenterCrop': CenterCrop, 'ToTensor': ToTensor
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Classification dependencies unavailable: {e}")
def load_segmentation_imports():
"""Lazy load segmentation dependencies"""
try:
import torch
import numpy as np
import nibabel as nib
import onnxruntime as ort
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from matplotlib.colors import ListedColormap
from monai.transforms import (
Compose, LoadImaged, EnsureChannelFirstd, EnsureTyped,
Orientationd, Spacingd, NormalizeIntensityd, SpatialPadd
)
from monai.data import Dataset, DataLoader
return {
'torch': torch, 'np': np, 'nib': nib, 'ort': ort, 'plt': plt,
'Patch': Patch, 'ListedColormap': ListedColormap,
'Compose': Compose, 'LoadImaged': LoadImaged,
'EnsureChannelFirstd': EnsureChannelFirstd, 'EnsureTyped': EnsureTyped,
'Orientationd': Orientationd, 'Spacingd': Spacingd,
'NormalizeIntensityd': NormalizeIntensityd, 'SpatialPadd': SpatialPadd,
'Dataset': Dataset, 'DataLoader': DataLoader
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Segmentation dependencies unavailable: {e}")
def get_classification_model(model_name):
"""Load or retrieve cached classification model"""
# Return cached model if available
if model_name in classification_models_cache:
return classification_models_cache[model_name]
# Validate model exists
if model_name not in CLASSIFICATION_MODELS:
raise HTTPException(status_code=400, detail=f"Model {model_name} not available")
model_path = CLASSIFICATION_MODELS[model_name]
if not os.path.exists(model_path):
raise HTTPException(status_code=404, detail=f"Model path not found: {model_path}")
libs = load_classification_imports()
try:
# Check if model is a LoRA adapter or full model
is_lora_adapter = os.path.exists(os.path.join(model_path, "adapter_config.json"))
if is_lora_adapter:
model_info = _load_lora_model(model_path, libs)
else:
model_info = _load_full_model(model_path, libs)
# Cache model components for reuse
classification_models_cache[model_name] = model_info
logger.info(f"Loaded classification model: {model_name}")
return model_info
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to load model {model_name}: {e}")
def _load_lora_model(model_path, libs):
"""Load LoRA adapter model with base model"""
peft_cfg = libs['PeftConfig'].from_pretrained(model_path)
parent_dir = os.path.dirname(model_path)
cfg_path = os.path.join(parent_dir, "config.json")
if not os.path.exists(cfg_path):
raise FileNotFoundError(f"Missing config.json in {parent_dir}")
with open(cfg_path, "r") as f:
cfg = json.load(f)
class_names = cfg.get("classes", [])
num_classes = len(class_names)
model = libs['AutoModelForImageClassification'].from_pretrained(
peft_cfg.base_model_name_or_path,
num_labels=num_classes,
label2id={cls: i for i, cls in enumerate(class_names)},
id2label={i: cls for i, cls in enumerate(class_names)},
ignore_mismatched_sizes=True,
device_map="auto"
)
model = libs['PeftModel'].from_pretrained(model, model_path)
processor = libs['AutoImageProcessor'].from_pretrained(peft_cfg.base_model_name_or_path)
return {'model': model, 'processor': processor, 'class_names': class_names}
def _load_full_model(model_path, libs):
"""Load full fine-tuned model"""
model = libs['AutoModelForImageClassification'].from_pretrained(model_path, device_map="auto")
processor = libs['AutoImageProcessor'].from_pretrained(model_path)
class_names = [model.config.id2label[i] for i in range(len(model.config.id2label))]
return {'model': model, 'processor': processor, 'class_names': class_names}
@app.post("/detect")
async def detect_objects(request: DetectionRequest):
"""Run YOLO detection on medical image"""
if request.model not in detection_models:
raise HTTPException(status_code=400, detail=f"Model {request.model} not available")
if not os.path.exists(request.image_path):
raise HTTPException(status_code=404, detail=f"Image not found: {request.image_path}")
from PIL import Image
model = detection_models[request.model]
# Run YOLO inference
results = model.predict(source=request.image_path, imgsz=640, verbose=False)
# Extract predictions from results
predictions = []
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
pred = {
'bbox': box.xyxy[0].tolist(), # [x1, y1, x2, y2]
'confidence': float(box.conf[0]),
'class': int(box.cls[0]),
'class_name': result.names[int(box.cls[0])] if result.names else str(int(box.cls[0]))
}
predictions.append(pred)
# Generate annotated image with bounding boxes
annotated_img = results[0].plot()
# YOLO plot() returns BGR format, convert to RGB for PIL
annotated_img_rgb = annotated_img[:, :, ::-1]
annotated_img_pil = Image.fromarray(annotated_img_rgb)
annotated_base64 = image_to_base64(annotated_img_pil)
return {
'task': 'detection',
'model_used': request.model,
'image_path': request.image_path,
'timestamp': datetime.now().isoformat(),
'predictions': predictions,
'total_detections': len(predictions),
'annotated_image': annotated_base64
}
def get_label(model, idx):
"""Get class label by index"""
id2label = model.config.id2label
key = str(idx) if str(idx) in id2label else idx
return id2label[key]
def preprocess_image_for_classification(image, processor, libs):
"""Preprocess image using training pipeline (Train.py)"""
# Determine image size
size = _get_processor_size(processor)
# Get normalization parameters
normalize = _get_normalization(processor, libs)
# Apply transforms
transforms = libs['Compose']([
libs['Resize'](size),
libs['CenterCrop'](size),
libs['ToTensor'](),
normalize
])
return transforms(image)
def _get_processor_size(processor):
"""Extract image size from processor"""
if not hasattr(processor, 'size'):
return 224
if isinstance(processor.size, dict):
return processor.size.get("shortest_edge", 224)
return processor.size
def _get_normalization(processor, libs):
"""Get normalization transform from processor or use defaults"""
if hasattr(processor, 'image_mean') and hasattr(processor, 'image_std'):
return libs['Normalize'](mean=processor.image_mean, std=processor.image_std)
# Default ImageNet normalization
return libs['Normalize'](mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def generate_multiple_cam_visualizations(model, image, processor, class_names, probs, top_idx, top_label, top_prob, libs):
"""
Generate multiple CAM visualizations (GradCAM, GradCAM++, EigenCAM, LayerCAM)
Uses 3 optimal target layers for MobileViT:
1. conv_1x1_exp: Final conv layer (highest-level features, most reliable)
2. fusion: CNN+Transformer fusion (captures both modalities)
3. conv_projection: After transformer (attention visualization)
Excludes ScoreCAM (too slow for production)
"""
# Use processor for CAM
inputs = processor(images=image, return_tensors="pt")
img_tensor = inputs["pixel_values"].squeeze(0)
# Ensure tensor is on same device as model
device = next(model.parameters()).device
img_tensor = img_tensor.to(device)
# Wrapper for CAM methods
class HuggingfaceToTensorModelWrapper(libs['torch'].nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x):
return self.model(x).logits
model.eval()
targets = [libs['ClassifierOutputTarget'](top_idx)]
wrapper = HuggingfaceToTensorModelWrapper(model)
# Determine if PEFT model
is_peft = isinstance(model, libs['PeftModel'])
base_model = model.base_model.model if is_peft else model
# Define 3 optimal target layers for MobileViT (ordered by importance)
target_layers = {}
# Layer 1: Final conv layer (MOST IMPORTANT - always works well)
target_layers['conv_1x1_exp'] = base_model.mobilevit.conv_1x1_exp
# Layer 2: Last fusion layer (CNN+Transformer combination)
if hasattr(base_model.mobilevit.encoder.layer[-1], 'fusion'):
target_layers['last_fusion'] = base_model.mobilevit.encoder.layer[-1].fusion
# Layer 3: Last conv projection (after transformer processing)
if hasattr(base_model.mobilevit.encoder.layer[-1], 'conv_projection'):
target_layers['last_conv_proj'] = base_model.mobilevit.encoder.layer[-1].conv_projection
# CAM methods (4 fast methods, excluding ScoreCAM)
cam_methods = {
'GradCAM': libs['GradCAM'],
'GradCAM++': libs['GradCAMPlusPlus'],
'EigenCAM': libs['EigenCAM'],
'LayerCAM': libs['LayerCAM']
}
# Generate CAM visualizations (4 methods × 3 layers = 12 total)
cam_results = {}
rgb_img = libs['np'].float32(image.resize((256, 256))) / 255.0
for layer_name, target_layer in target_layers.items():
for method_name, cam_class in cam_methods.items():
try:
with cam_class(model=wrapper, target_layers=[target_layer]) as cam:
grayscale_cam = cam(input_tensor=img_tensor.unsqueeze(0), targets=targets)[0, :]
# Create visualization
cam_img = libs['show_cam_on_image'](rgb_img, grayscale_cam, use_rgb=True)
# Create figure for this combination
fig, axes = libs['plt'].subplots(1, 2, figsize=(12, 5))
axes[0].imshow(image)
axes[0].set_title("Original Image", fontsize=12, fontweight='bold')
axes[0].axis("off")
axes[1].imshow(cam_img)
axes[1].set_title(f"{method_name} ({layer_name}): {top_label} ({top_prob*100:.2f}%)",
fontsize=11, fontweight='bold')
axes[1].axis("off")
legend_text = " | ".join([f"{cls}: {p*100:.2f}%" for cls, p in zip(class_names, probs)])
libs['plt'].figtext(0.5, 0.02, legend_text, ha="center", fontsize=10, style='italic')
libs['plt'].tight_layout(rect=[0, 0.08, 1, 1])
# Store result
key = f"{method_name}_{layer_name}"
cam_results[key] = figure_to_base64(fig)
libs['plt'].close(fig)
except Exception as e:
logger.warning(f"Failed to generate {method_name} with {layer_name}: {e}")
continue
return cam_results
@app.post("/classify")
async def classify_image(request: ClassificationRequest):
"""Classification with multiple CAM visualizations (GradCAM, GradCAM++, EigenCAM, LayerCAM)"""
if not os.path.exists(request.image_path):
raise HTTPException(status_code=404, detail=f"Image not found: {request.image_path}")
libs = load_classification_imports()
model_info = get_classification_model(request.model)
model = model_info['model']
processor = model_info['processor']
class_names = model_info['class_names']
image = libs['Image'].open(request.image_path).convert("RGB")
# Use Train.py preprocessing for accurate predictions
img_tensor = preprocess_image_for_classification(image, processor, libs)
# Ensure tensor is on same device as model
device = next(model.parameters()).device
img_tensor = img_tensor.to(device)
with libs['torch'].no_grad():
logits = model(img_tensor.unsqueeze(0)).logits
probs = libs['torch'].softmax(logits, dim=-1)[0].cpu().numpy()
top_idx = int(libs['np'].argmax(probs))
top_label = class_names[top_idx]
top_prob = probs[top_idx]
predictions = [
{'class_name': class_name, 'confidence': float(prob), 'class_id': i}
for i, (class_name, prob) in enumerate(zip(class_names, probs))
]
predictions.sort(key=lambda x: x['confidence'], reverse=True)
# Generate multiple CAM visualizations
cam_visualizations = {}
try:
cam_visualizations = generate_multiple_cam_visualizations(
model, image, processor, class_names, probs, top_idx, top_label, top_prob, libs
)
logger.info(f"Generated {len(cam_visualizations)} CAM visualizations")
except Exception as e:
logger.error(f"CAM generation failed: {str(e)}")
logger.exception("Full error:")
return {
'task': 'classification',
'model_used': request.model,
'image_path': request.image_path,
'timestamp': datetime.now().isoformat(),
'top_prediction': {'class_name': top_label, 'confidence': float(top_prob)},
'all_predictions': predictions,
'class_names': class_names,
'cam_visualizations': cam_visualizations,
'note': f'Generated {len(cam_visualizations)} CAM visualizations' if cam_visualizations else 'CAM generation failed'
}
class ConvertToMultiChannelBasedOnBratsClassesd:
"""Convert BraTS labels to multi-channel (TC, WT, ET)"""
def __init__(self, keys):
self.keys = [keys] if isinstance(keys, str) else keys
def __call__(self, data):
libs = load_segmentation_imports()
d = dict(data)
for key in self.keys:
result = []
# Channel 0: Tumor Core (TC) = NCR/NET (1) or ET (4)
result.append(libs['torch'].logical_or(d[key] == 1, d[key] == 4))
# Channel 1: Whole Tumor (WT) = TC + ED (2)
result.append(libs['torch'].logical_or(libs['torch'].logical_or(d[key] == 1, d[key] == 4), d[key] == 2))
# Channel 2: Enhancing Tumor (ET) = ET (4) only
result.append(d[key] == 4)
d[key] = libs['torch'].stack(result, axis=0).float()
return d
def get_segmentation_transforms(roi_size=(128, 128, 128)):
"""Create MONAI preprocessing pipeline"""
libs = load_segmentation_imports()
return libs['Compose']([
libs['LoadImaged'](keys=["image", "label"]), # Load NIfTI files
libs['EnsureChannelFirstd'](keys="image"), # Ensure channel-first format
libs['EnsureTyped'](keys=["image", "label"]), # Convert to tensors
ConvertToMultiChannelBasedOnBratsClassesd(keys=["label"]), # Convert labels to multi-channel
libs['Orientationd'](keys=["image", "label"], axcodes="RAS"), # Standardize orientation
libs['Spacingd'](keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")), # Resample
libs['SpatialPadd'](keys=["image", "label"], spatial_size=roi_size, mode="constant"), # Pad to fixed size
libs['NormalizeIntensityd'](keys="image", nonzero=True, channel_wise=True), # Normalize intensities
])
def calculate_dice_score(pred, target, epsilon=1e-8):
"""Calculate Dice coefficient per channel"""
dice_scores = []
for c in range(pred.shape[0]):
pred_c = pred[c].flatten()
target_c = target[c].flatten()
intersection = (pred_c * target_c).sum()
dice = (2.0 * intersection + epsilon) / (pred_c.sum() + target_c.sum() + epsilon)
dice_scores.append(dice.item())
return dice_scores
def visualize_segmentation(pred_data, libs):
"""Create segmentation visualization with MRI modalities"""
case_id = pred_data['case_id']
image = pred_data['image']
pred = pred_data['pred']
label = pred_data['label']
dice = pred_data['dice']
# Find slice with most tumor for visualization
tumor_per_slice = label.sum(axis=(0, 1, 2))
slice_idx = int(libs['np'].argmax(tumor_per_slice))
if tumor_per_slice[slice_idx] == 0:
slice_idx = label.shape[3] // 2 # Use middle slice if no tumor
# Extract all MRI modalities for selected slice
flair = image[0, :, :, slice_idx]
t1 = image[1, :, :, slice_idx]
t1ce = image[2, :, :, slice_idx]
t2 = image[3, :, :, slice_idx]
def multi_to_single(multi_slice):
"""Convert multi-channel segmentation to single-channel with BraTS labels"""
single = libs['np'].zeros_like(multi_slice[0])
et_mask = multi_slice[2] > 0.5 # ET = 4
tc_mask = (multi_slice[0] > 0.5) & (~et_mask) # NCR/NET = 1
wt_mask = (multi_slice[1] > 0.5) & (libs['np'].logical_not(multi_slice[0] > 0.5)) # ED = 2
single[et_mask] = 4
single[tc_mask] = 1
single[wt_mask] = 2
return single
# Convert multi-channel to single-channel for visualization
label_slice = multi_to_single(label[:, :, :, slice_idx])
pred_slice = multi_to_single(pred[:, :, :, slice_idx])
# Create 2x4 grid: top row = modalities, bottom row = segmentations
fig, axes = libs['plt'].subplots(2, 4, figsize=(24, 12))
# Add title with case info and Dice scores
title = f"{case_id} - Axial Slice {slice_idx} (Tumor Vol: {label.sum(axis=(0,1,2))[slice_idx]:.0f} vox)\n"
title += f"Dice: TC={dice[0]:.3f}, WT={dice[1]:.3f}, ET={dice[2]:.3f} | Avg={libs['np'].mean(dice):.3f}"
fig.suptitle(title, fontsize=14, fontweight='bold')
axes[0, 0].imshow(flair.T, cmap='gray', origin='lower')
axes[0, 0].set_title('FLAIR', fontsize=12); axes[0, 0].axis('off')
axes[0, 1].imshow(t1.T, cmap='gray', origin='lower')
axes[0, 1].set_title('T1', fontsize=12); axes[0, 1].axis('off')
axes[0, 2].imshow(t1ce.T, cmap='gray', origin='lower')
axes[0, 2].set_title('T1CE', fontsize=12); axes[0, 2].axis('off')
axes[0, 3].imshow(t2.T, cmap='gray', origin='lower')
axes[0, 3].set_title('T2', fontsize=12); axes[0, 3].axis('off')
# Bottom row: Segmentation results with color-coded labels
colors = ['black', 'red', 'green', 'white', 'blue'] # 0=bg, 1=NCR, 2=ED, 3=unused, 4=ET
cmap = libs['ListedColormap'](colors)
axes[1, 0].imshow(label_slice.T, cmap=cmap, origin='lower', vmin=0, vmax=4)
axes[1, 0].set_title('Ground Truth', fontsize=12, fontweight='bold'); axes[1, 0].axis('off')
axes[1, 1].imshow(pred_slice.T, cmap=cmap, origin='lower', vmin=0, vmax=4)
axes[1, 1].set_title('Prediction', fontsize=12, fontweight='bold'); axes[1, 1].axis('off')
# Overlay: Show matches (green) and errors (red)
axes[1, 2].imshow(t1ce.T, cmap='gray', origin='lower', alpha=0.7)
match_mask = (label_slice == pred_slice) & (label_slice > 0)
error_mask = (label_slice != pred_slice) & ((label_slice > 0) | (pred_slice > 0))
axes[1, 2].imshow(match_mask.T.astype(float), cmap='Greens', alpha=0.6, origin='lower')
axes[1, 2].imshow(error_mask.T.astype(float), cmap='Reds', alpha=0.6, origin='lower')
axes[1, 2].set_title('Overlay (Green=Match, Red=Error)', fontsize=12, fontweight='bold'); axes[1, 2].axis('off')
axes[1, 3].axis('off')
legend_elements = [libs['Patch'](facecolor='black', label='0: Background'),
libs['Patch'](facecolor='red', label='1: NCR/NET (TC)'),
libs['Patch'](facecolor='green', label='2: ED (WT)'),
libs['Patch'](facecolor='blue', label='4: ET')]
fig.legend(handles=legend_elements, loc='lower center', fontsize='medium', ncol=4, bbox_to_anchor=(0.5, -0.02))
libs['plt'].tight_layout(rect=[0, 0.08, 1, 1])
return figure_to_base64(fig)
def generate_additional_visualizations(pred_data, libs):
"""Generate multi-slice visualizations (1, 3, 5 slices)"""
case_id = pred_data['case_id']
image = pred_data['image']
pred = pred_data['pred']
total_slices = image.shape[3]
# Find slice with maximum tumor segmentation
tumor_per_slice = pred.sum(axis=(0, 1, 2))
max_slice = int(libs['np'].argmax(tumor_per_slice))
if tumor_per_slice[max_slice] == 0:
max_slice = total_slices // 2
def multi_to_single(multi_slice):
"""Convert multi-channel to single-channel with BraTS labels"""
single = libs['np'].zeros_like(multi_slice[0])
et_mask = multi_slice[2] > 0.5
tc_mask = (multi_slice[0] > 0.5) & (~et_mask)
wt_mask = (multi_slice[1] > 0.5) & (libs['np'].logical_not(multi_slice[0] > 0.5))
single[et_mask] = 4
single[tc_mask] = 1
single[wt_mask] = 2
return single
# Color legend for all visualizations
legend_elements = [libs['plt'].Rectangle((0,0),1,1, facecolor='red', alpha=0.5, label='NCR/NET'),
libs['plt'].Rectangle((0,0),1,1, facecolor='green', alpha=0.5, label='ED'),
libs['plt'].Rectangle((0,0),1,1, facecolor='blue', alpha=0.5, label='ET')]
visualization_b64 = {}
# 1. Single slice visualization
fig, ax = libs['plt'].subplots(1, 1, figsize=(6, 6))
fig.suptitle(f'{case_id} - Single Most Segmented Slice', fontsize=12, fontweight='bold')
img = image[2, :, :, max_slice] # Use T1CE modality
pred_slice = multi_to_single(pred[:, :, :, max_slice])
ax.imshow(libs['np'].rot90(img, k=2), cmap='gray')
# Overlay each tumor class with different color
for lbl, color in [(1, 'red'), (2, 'green'), (4, 'blue')]:
mask = pred_slice == lbl
ax.imshow(libs['np'].rot90(mask, k=2), cmap=libs['ListedColormap'](['none', color]), alpha=0.5)
ax.set_title(f'Slice {max_slice}')
ax.axis('off')
fig.legend(handles=legend_elements, loc='lower center', fontsize='small', ncol=3, bbox_to_anchor=(0.5, -0.05))
libs['plt'].tight_layout()
visualization_b64['single_slice'] = figure_to_base64(fig)
# 2. Three-slice visualization (offset by 10)
offsets = SLICE_OFFSETS_3
slices_3 = []
for offset in offsets:
idx_val = max_slice + offset
if 0 <= idx_val < total_slices:
slices_3.append(idx_val)
# Fill to 3 slices if needed
while len(slices_3) < 3:
if slices_3[0] > 0:
slices_3.insert(0, slices_3[0] - 1)
elif slices_3[-1] < total_slices - 1:
slices_3.append(slices_3[-1] + 1)
else:
break
slices_3 = slices_3[:3]
fig, axes = libs['plt'].subplots(1, 3, figsize=(24, 8))
fig.suptitle(f'{case_id} - 3 Slices (Jump=10)', fontsize=18, fontweight='bold', y=0.98)
for i, slice_idx in enumerate(slices_3):
img = image[2, :, :, slice_idx]
pred_slice = multi_to_single(pred[:, :, :, slice_idx])
axes[i].imshow(libs['np'].rot90(img, k=2), cmap='gray')
for lbl, color in [(1, 'red'), (2, 'green'), (4, 'blue')]:
mask = pred_slice == lbl
axes[i].imshow(libs['np'].rot90(mask, k=2), cmap=libs['ListedColormap'](['none', color]), alpha=0.5)
axes[i].set_title(f'Slice {slice_idx}', fontsize=16, fontweight='bold', pad=15)
axes[i].axis('off')
fig.legend(handles=legend_elements, loc='lower center', fontsize='large', ncol=3, bbox_to_anchor=(0.5, -0.01))
libs['plt'].tight_layout(rect=[0, 0.03, 1, 0.96])
visualization_b64['three_slices'] = figure_to_base64(fig)
# 3. Five-slice visualization (offset by 5)
offsets = SLICE_OFFSETS_5
slices_5 = []
for offset in offsets:
idx_val = max_slice + offset
if 0 <= idx_val < total_slices:
slices_5.append(idx_val)
# Fill to 5 slices if needed
while len(slices_5) < 5:
if slices_5[0] > 0:
slices_5.insert(0, slices_5[0] - 1)
elif slices_5[-1] < total_slices - 1:
slices_5.append(slices_5[-1] + 1)
else:
break
slices_5 = slices_5[:5]
fig, axes = libs['plt'].subplots(1, 5, figsize=(30, 6))
fig.suptitle(f'{case_id} - 5 Slices (Jump=5)', fontsize=18, fontweight='bold', y=0.98)
for i, slice_idx in enumerate(slices_5):
img = image[2, :, :, slice_idx]
pred_slice = multi_to_single(pred[:, :, :, slice_idx])
axes[i].imshow(libs['np'].rot90(img, k=2), cmap='gray')
for lbl, color in [(1, 'red'), (2, 'green'), (4, 'blue')]:
mask = pred_slice == lbl
axes[i].imshow(libs['np'].rot90(mask, k=2), cmap=libs['ListedColormap'](['none', color]), alpha=0.5)
axes[i].set_title(f'Slice {slice_idx}', fontsize=14, fontweight='bold', pad=12)
axes[i].axis('off')
fig.legend(handles=legend_elements, loc='lower center', fontsize='large', ncol=3, bbox_to_anchor=(0.5, -0.01))
libs['plt'].tight_layout(rect=[0, 0.03, 1, 0.96])
visualization_b64['five_slices'] = figure_to_base64(fig)
return visualization_b64
def create_3d_prediction_html(pred_data, libs, downsample_factor=None, max_brain_points=None, max_tumor_points=None):
"""Create interactive 3D Plotly visualization"""
# Use config values if not provided
if downsample_factor is None:
downsample_factor = DOWNSAMPLE_FACTOR
if max_brain_points is None:
max_brain_points = MAX_BRAIN_POINTS
if max_tumor_points is None:
max_tumor_points = MAX_TUMOR_POINTS
try:
case_id = pred_data['case_id']
pred = pred_data['pred']
case_path = f"Files_Seg3D/{case_id}"
t1ce_file = os.path.join(case_path, f"{case_id}_t1ce.nii")
if not os.path.exists(t1ce_file):
logger.error(f"T1CE file not found: {t1ce_file}")
return None
import nibabel as nib
import plotly.graph_objects as go
import plotly.io as pio
# Load T1CE MRI scan
t1ce_img = nib.load(t1ce_file)
t1ce_data = t1ce_img.get_fdata()
# Downsample for performance
brain = t1ce_data[::downsample_factor, ::downsample_factor, ::downsample_factor]
pred_down = pred[:, ::downsample_factor, ::downsample_factor, ::downsample_factor]
brain_norm = (brain - brain.min()) / (brain.max() - brain.min())
# Convert multi-channel to single-channel segmentation
pred_seg = libs['np'].zeros_like(pred_down[0])
pred_seg[pred_down[1] > 0.5] = 2 # ED
pred_seg[pred_down[0] > 0.5] = 1 # NCR/NET
pred_seg[pred_down[2] > 0.5] = 4 # ET
# Extract brain tissue coordinates (threshold at 0.2)
brain_mask = brain_norm > 0.2
coords = libs['np'].where(brain_mask)
if len(coords[0]) == 0:
logger.error("No brain tissue found")
return None
# Randomly sample brain points for performance
brain_sample_idx = libs['np'].random.choice(len(coords[0]), min(max_brain_points, len(coords[0])), replace=False)
# Create 3D scatter plot
fig = go.Figure()
# Add brain tissue as background
fig.add_trace(go.Scatter3d(
x=coords[0][brain_sample_idx],
y=coords[1][brain_sample_idx],
z=coords[2][brain_sample_idx],
mode='markers',
marker=dict(size=2, color='lightgray', opacity=0.4),
name='Brain Tissue',
showlegend=True
))
# Add tumor regions with different colors
pred_tumor_classes = {
1: ("NCR/NET", "red", 0.3),
2: ("ED", "green", 0.05),
4: ("ET", "blue", 0.1)
}
for lbl, (label_name, color, opacity) in pred_tumor_classes.items():
tumor_coords = libs['np'].where(pred_seg == lbl)
if tumor_coords[0].size > 0:
# Sample tumor points for performance
sample_idx = libs['np'].random.choice(len(tumor_coords[0]), min(max_tumor_points, len(tumor_coords[0])), replace=False)
fig.add_trace(go.Scatter3d(
x=tumor_coords[0][sample_idx],
y=tumor_coords[1][sample_idx],
z=tumor_coords[2][sample_idx],
mode='markers',
marker=dict(size=4, color=color, opacity=opacity),
name=label_name,
showlegend=True
))
fig.update_layout(
title=dict(text=f'<b>3D Brain Tumor Prediction: {case_id}</b>', x=0.5, xanchor='center', font=dict(size=16)),
scene=dict(
xaxis_title='Sagittal', yaxis_title='Coronal', zaxis_title='Axial',
aspectmode='data', camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
xaxis=dict(showbackground=True, backgroundcolor="rgb(230, 230, 230)"),
yaxis=dict(showbackground=True, backgroundcolor="rgb(230, 230, 230)"),
zaxis=dict(showbackground=True, backgroundcolor="rgb(230, 230, 230)")
),
height=700, width=1000, margin=dict(l=0, r=0, b=80, t=120),
legend=dict(x=0.02, y=0.98, bgcolor='rgba(255,255,255,0.8)', bordercolor='black', borderwidth=1, font=dict(size=12))
)
# Generate HTML with centered layout
html_content = pio.to_html(fig, include_plotlyjs='cdn')
# Add CSS to center the plot in the viewport
centered_html = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<style>
body {{
margin: 0;
padding: 0;
display: flex;
justify-content: center;
align-items: center;
min-height: 100vh;
background-color: #f5f5f5;
}}
.plotly-graph-div {{
margin: auto;
}}
</style>
</head>
<body>
{html_content.split('<body>')[1].split('</body>')[0]}
</body>
</html>
"""
html_b64 = base64.b64encode(centered_html.encode()).decode()
logger.info(f"3D prediction HTML generated for {case_id}")
return html_b64
except Exception as e:
logger.error(f"Error creating 3D prediction HTML: {e}")
return None
@app.post("/segment")
async def segment_brain_tumor(request: SegmentationRequest):
"""
Run 3D brain tumor segmentation on BraTS case
Expects case folder with: flair, t1, t1ce, t2, seg NIfTI files
Returns Dice scores, visualizations, volumetric and spatial analysis
"""
if request.model not in SEGMENTATION_MODELS:
raise HTTPException(status_code=400, detail=f"Model {request.model} not available")
if not os.path.exists(request.case_path):
raise HTTPException(status_code=404, detail=f"Case not found: {request.case_path}")
libs = load_segmentation_imports()
case_id = os.path.basename(request.case_path)
# Verify all required modalities exist
required = ['flair', 't1', 't1ce', 't2', 'seg']
file_paths = {}
for mod in required:
fp = os.path.join(request.case_path, f"{case_id}_{mod}.nii")
if not os.path.exists(fp):
raise HTTPException(status_code=404, detail=f"Missing: {fp}")
file_paths[mod] = fp
data_dict = {
"image": [file_paths['flair'], file_paths['t1'], file_paths['t1ce'], file_paths['t2']],
"label": file_paths['seg'],
"case_id": case_id
}
transforms = get_segmentation_transforms()
dataset = libs['Dataset'](data=[data_dict], transform=transforms)
# Use num_workers=0 to avoid multiprocessing issues with relative imports
dataloader = libs['DataLoader'](dataset, batch_size=1, shuffle=False, num_workers=0)
model_path = SEGMENTATION_MODELS[request.model]
if not os.path.exists(model_path):
raise HTTPException(status_code=404, detail=f"Model not found: {model_path}")
session_options = libs['ort'].SessionOptions()
ort_session = libs['ort'].InferenceSession(model_path, sess_options=session_options,
providers=['CPUExecutionProvider'])
for batch_data in dataloader:
images = batch_data["image"]
labels = batch_data["label"]
images_np = images.cpu().numpy()
ort_inputs = {ort_session.get_inputs()[0].name: images_np}
outputs_np = ort_session.run(None, ort_inputs)[0]
outputs = libs['torch'].from_numpy(outputs_np)
outputs = libs['torch'].sigmoid(outputs)
outputs = (outputs > 0.5).float()
dice_scores = calculate_dice_score(outputs[0], labels[0])
pred_data = {
'case_id': case_id,
'image': images[0].cpu().numpy(),
'pred': outputs[0].cpu().numpy(),
'label': labels[0].cpu().numpy(),
'dice': dice_scores
}
# Calculate volumetric analysis
voxel_volume = 1.5 * 1.5 * 2.0 # mm³ per voxel (from spacing transform)
pred_np = outputs[0].cpu().numpy()
# Calculate volumes for each tumor region (convert mm³ to cm³)
tc_volume = float(libs['np'].sum(pred_np[0] > 0.5) * voxel_volume / 1000) # Tumor Core
wt_volume = float(libs['np'].sum(pred_np[1] > 0.5) * voxel_volume / 1000) # Whole Tumor
et_volume = float(libs['np'].sum(pred_np[2] > 0.5) * voxel_volume / 1000) # Enhancing Tumor
# Calculate derived volumes
ncr_volume = tc_volume - et_volume # Necrotic core = TC - ET
ed_volume = wt_volume - tc_volume # Edema = WT - TC
# Calculate spatial analysis: tumor location (center of mass)
if libs['np'].sum(pred_np[1] > 0.5) > 0: # Use whole tumor channel
tumor_coords = libs['np'].where(pred_np[1] > 0.5)
center_of_mass = {
'sagittal': float(libs['np'].mean(tumor_coords[0])),
'coronal': float(libs['np'].mean(tumor_coords[1])),
'axial': float(libs['np'].mean(tumor_coords[2]))
}
else:
center_of_mass = None
# Calculate spatial analysis: tumor extent (bounding box)
if libs['np'].sum(pred_np[1] > 0.5) > 0:
tumor_coords = libs['np'].where(pred_np[1] > 0.5)
extent = {
'sagittal_range': [int(tumor_coords[0].min()), int(tumor_coords[0].max())],
'coronal_range': [int(tumor_coords[1].min()), int(tumor_coords[1].max())],
'axial_range': [int(tumor_coords[2].min()), int(tumor_coords[2].max())],
'sagittal_span_mm': float((tumor_coords[0].max() - tumor_coords[0].min()) * 1.5),
'coronal_span_mm': float((tumor_coords[1].max() - tumor_coords[1].min()) * 1.5),
'axial_span_mm': float((tumor_coords[2].max() - tumor_coords[2].min()) * 2.0)
}
else:
extent = None
# Generate all visualizations
main_viz_b64 = visualize_segmentation(pred_data, libs)
additional_viz_b64 = generate_additional_visualizations(pred_data, libs)
html_3d_b64 = create_3d_prediction_html(pred_data, libs)
class_names = ['Tumor Core (TC)', 'Whole Tumor (WT)', 'Enhancing Tumor (ET)']
result = {
'task': 'segmentation',
'model_used': request.model,
'case_path': request.case_path,
'case_id': case_id,
'timestamp': datetime.now().isoformat(),
'dice_scores': {class_names[i]: dice_scores[i] for i in range(len(class_names))},
'average_dice': float(libs['np'].mean(dice_scores)),
'volumetric_analysis': {
'tumor_core_volume_cm3': round(tc_volume, 2),
'whole_tumor_volume_cm3': round(wt_volume, 2),
'enhancing_tumor_volume_cm3': round(et_volume, 2),
'necrotic_core_volume_cm3': round(ncr_volume, 2),
'edema_volume_cm3': round(ed_volume, 2),
'voxel_spacing_mm': [1.5, 1.5, 2.0]
},
'spatial_analysis': {
'center_of_mass': center_of_mass,
'tumor_extent': extent
},
'visualization': main_viz_b64,
'additional_visualizations': additional_viz_b64,
'class_names': class_names
}
if html_3d_b64:
result['3d_html_visualization'] = html_3d_b64
return result
@app.get("/models")
async def get_models():
available_class = [m for m, p in CLASSIFICATION_MODELS.items() if os.path.exists(p)]
available_seg = [m for m, p in SEGMENTATION_MODELS.items() if os.path.exists(p)]
return {
'detection_models': list(detection_models.keys()),
'classification_models': available_class,
'segmentation_models': available_seg
}
@app.get("/health")
async def health_check():
available_class = [m for m, p in CLASSIFICATION_MODELS.items() if os.path.exists(p)]
available_seg = [m for m, p in SEGMENTATION_MODELS.items() if os.path.exists(p)]
return {
'status': 'healthy',
'detection_models': len(detection_models),
'classification_models': len(available_class),
'segmentation_models': len(available_seg)
}
@app.get("/")
async def root():
return {
'message': 'Medical AI Models Server',
'version': '3.0',
'endpoints': {
'detection': '/detect',
'classification': '/classify',
'segmentation': '/segment',
'models': '/models',
'health': '/health'
}
}
@app.on_event("startup")
async def startup_event():
logger.info("="*80)
logger.info("MEDICAL AI MODELS SERVER")
logger.info("="*80)
load_detection_models()
load_all_classification_models()
available_segmentation = []
for model_name, model_path in SEGMENTATION_MODELS.items():
if os.path.exists(model_path):
available_segmentation.append(model_name)
logger.info(f"Segmentation models available: {len(available_segmentation)}")
logger.info(f"Available: {available_segmentation}")
logger.info("="*80)
logger.info("SERVER READY - ALL MODELS PRE-LOADED!")
logger.info("="*80)
if __name__ == '__main__':
uvicorn.run(app, host="0.0.0.0", port=8000)
|