Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,894 Bytes
0e59015 f87a4ad 0e59015 f87a4ad 0e59015 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
import base64
from http import HTTPStatus
import os
import uuid
import time
from datetime import datetime, timedelta
import torch
import gradio as gr
from gradio_client import utils as client_utils
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
import modelscope_studio.components.pro as pro
from config import DEFAULT_THEME, LIGHT_THEME, DEFAULT_SYS_PROMPT,DEFAULT_MODEL_SIZE, save_history, user_config, bot_config, welcome_config, markdown_config, upload_config, MINISTRAL_MODELS
from ui_components.thinking_button import ThinkingButton
import spaces
try:
from transformers import Mistral3ForConditionalGeneration, AutoProcessor, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import hf_hub_download
from threading import Thread
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
print("Warning: transformers not available. Running in demo mode only.")
MODEL_CACHE = {}
SYSTEM_PROMPT_CACHE = {}
PROCESSOR_CACHE = {}
print("=" * 50)
print("🚀 Ministral Demo Starting")
print(f" Model cache initialized (empty)")
print(f" Processor cache initialized (empty)")
print(f" System prompt cache initialized (empty)")
print("=" * 50)
def log_with_time(message: str):
timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3]
print(f"[{timestamp}] {message}")
def log_cache_status():
log_with_time(f"📦 Cache status: {len(MODEL_CACHE)} models, {len(PROCESSOR_CACHE)} processors, {len(SYSTEM_PROMPT_CACHE)} prompts cached")
def load_system_prompt(model_id: str) -> str:
cache_key = model_id
if cache_key in SYSTEM_PROMPT_CACHE:
log_with_time(f"📋 System prompt cache hit for {model_id.split('/')[-1]}")
cached_prompt = SYSTEM_PROMPT_CACHE[cache_key]
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = model_id.split("/")[-1]
return cached_prompt.format(name=model_name, today=today, yesterday=yesterday)
try:
log_with_time(f"📥 Downloading system prompt for {model_id.split('/')[-1]}...")
start = time.time()
file_path = hf_hub_download(repo_id=model_id, filename="SYSTEM_PROMPT.txt")
with open(file_path, "r") as file:
system_prompt = file.read()
SYSTEM_PROMPT_CACHE[cache_key] = system_prompt
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = model_id.split("/")[-1]
log_with_time(f"✅ System prompt loaded in {time.time() - start:.2f}s")
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
except Exception as e:
log_with_time(f"⚠️ Could not load system prompt: {e}")
return DEFAULT_SYS_PROMPT
def get_processor_and_tokenizer(model_id: str):
if model_id in PROCESSOR_CACHE:
log_with_time(f"📋 Processor cache hit for {model_id.split('/')[-1]}")
return PROCESSOR_CACHE[model_id]
try:
log_with_time(f"📥 Loading processor for {model_id.split('/')[-1]}...")
start = time.time()
processor = AutoProcessor.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
PROCESSOR_CACHE[model_id] = (processor, tokenizer)
log_with_time(f"✅ Processor loaded in {time.time() - start:.2f}s")
return processor, tokenizer
except Exception as e:
log_with_time(f"❌ Error loading processor: {e}")
return None, None
def get_model_and_processor(model_id: str, show_notification=False):
if not TRANSFORMERS_AVAILABLE:
log_with_time("⚠️ Transformers not available")
return None, None, None
if model_id in MODEL_CACHE:
log_with_time(f"📋 Model cache hit for {model_id.split('/')[-1]}")
return MODEL_CACHE[model_id]
model_name = model_id.split("/")[-1]
try:
if show_notification:
gr.Info(f"📥 Loading {model_name}... This may take a few minutes on first use.", duration=15)
total_start = time.time()
processor, tokenizer = get_processor_and_tokenizer(model_id)
if processor is None or tokenizer is None:
return None, None, None
log_with_time(f"📥 Loading model weights for {model_name}...")
model_start = time.time()
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
).eval()
log_with_time(f"✅ Model weights loaded in {time.time() - model_start:.2f}s")
MODEL_CACHE[model_id] = (model, processor, tokenizer)
total_time = time.time() - total_start
log_with_time(f"🎉 {model_name} fully loaded in {total_time:.2f}s (cached for future use)")
if show_notification:
gr.Info(f"✅ {model_name} loaded and ready!", duration=3)
return model, processor, tokenizer
except Exception as e:
log_with_time(f"❌ Error loading model {model_id}: {e}")
if show_notification:
gr.Warning(f"❌ Failed to load model: {str(e)}", duration=10)
return None, None, None
def encode_file_to_base64(file_path):
with open(file_path, "rb") as file:
mime_type = client_utils.get_mimetype(file_path)
bae64_data = base64.b64encode(file.read()).decode("utf-8")
return f"data:{mime_type};base64,{bae64_data}"
def format_history_for_transformers(history, model_id):
system_prompt = load_system_prompt(model_id)
messages = [{
"role": "system",
"content": [{"type": "text", "text": system_prompt}]
}]
for item in history:
if item["role"] == "user":
content = []
text_content = item["content"][1]["content"]
content.append({"type": "text", "text": text_content})
for file_path in item["content"][0]["content"]:
if file_path.startswith("http"):
content.append({"type": "image", "url": file_path})
elif os.path.exists(file_path):
mime_type = client_utils.get_mimetype(file_path)
if mime_type.startswith("image"):
content.append({"type": "image", "url": file_path})
messages.append({
"role": "user",
"content": content
})
elif item["role"] == "assistant":
text_contents = [content["content"] for content in item["content"] if content["type"] == "text"]
if text_contents:
messages.append({
"role": "assistant",
"content": [{"type": "text", "text": " ".join(text_contents)}]
})
return messages
def prepare_inputs(processor, messages):
log_with_time("📋 Preparing inputs...")
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
)
if 'token_type_ids' in inputs:
del inputs['token_type_ids']
return inputs
@spaces.GPU(duration=180)
def generate_streaming(model, processor, tokenizer, messages):
log_with_time("🚀 Starting streaming generation...")
inputs = prepare_inputs(processor, messages)
log_with_time("📤 Moving tensors to GPU...")
inputs = {
k: (v.to(model.device, dtype=torch.bfloat16) if v.is_floating_point() else v.to(model.device))
for k, v in inputs.items()
}
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=2048,
temperature=0.15,
do_sample=True,
)
log_with_time("🧵 Starting generation thread...")
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
log_with_time("📝 Streaming tokens...")
generated_text = ""
for token in streamer:
generated_text += token
yield {"token": token, "full_text": generated_text, "done": False}
thread.join()
log_with_time(f"✅ Generation complete: {len(generated_text)} chars")
yield {"token": "", "full_text": generated_text, "done": True}
class Gradio_Events:
@staticmethod
def submit(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
enable_thinking = state_value["conversation_contexts"][state_value["conversation_id"]]["enable_thinking"]
model_size = state_value["conversation_contexts"][state_value["conversation_id"]].get("model_size", "14B")
model_type = "reasoning" if enable_thinking else "instruct"
model_id = MINISTRAL_MODELS[model_size][model_type]
log_cache_status()
log_with_time(f"📝 Formatting {len(history)} messages for {model_id.split('/')[-1]}")
messages = format_history_for_transformers(history, model_id)
log_with_time(f"📨 {len(messages)} messages prepared (including system prompt)")
history.append({
"role": "assistant",
"content": [],
"key": str(uuid.uuid4()),
"loading": True,
"header": f"Ministral-3-{model_size}",
"status": "pending"
})
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value),
}
try:
start_time = time.time()
answer_content = ""
if TRANSFORMERS_AVAILABLE:
needs_download = model_id not in MODEL_CACHE
model, processor, tokenizer = get_model_and_processor(model_id, show_notification=needs_download)
else:
model, processor, tokenizer = None, None, None
if model is not None and processor is not None and tokenizer is not None:
log_with_time(f"🚀 Starting inference with {model_id.split('/')[-1]}")
try:
inference_start = time.time()
history[-1]["content"] = [{
"type": "text",
"content": "",
}]
history[-1]["loading"] = False
for chunk in generate_streaming(model, processor, tokenizer, messages):
if chunk.get("token"):
answer_content = chunk["full_text"]
history[-1]["content"][0]["content"] = answer_content
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
if chunk.get("done"):
answer_content = chunk["full_text"]
break
inference_time = time.time() - inference_start
log_with_time(f"✅ Streaming generation completed in {inference_time:.2f}s")
except Exception as e:
log_with_time(f"❌ Model inference error: {e}")
error_str = str(e)
if "timeout" in error_str.lower() or "aborted" in error_str.lower():
answer_content = "⏱️ GPU timeout: The request took too long to process. Please try:\n\n1. Using a shorter prompt\n2. Reducing image sizes\n3. Trying again in a moment"
elif "memory" in error_str.lower() or "oom" in error_str.lower():
answer_content = "💾 GPU out of memory. Try using a smaller model or reducing input size."
else:
answer_content = f"❌ Model inference failed: {error_str}\n\nPlease try again or check the console for more details."
history[-1]["content"] = [{
"type": "text",
"content": answer_content,
}]
history[-1]["loading"] = False
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
else:
log_with_time(f"⚠️ Using demo mode for: {model_id}")
demo_answer = f"This is a demo response from {model_id}. The application is running in demo mode.\n\nTo use real models, install transformers: `pip install transformers torch`\n\nYour message: {messages[-1]['content'][0]['text'] if messages and messages[-1]['content'] else 'N/A'}"
history[-1]["content"] = [{
"type": "text",
"content": "",
}]
for char in demo_answer:
answer_content += char
history[-1]["content"][0]["content"] = answer_content
history[-1]["loading"] = False
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
time.sleep(0.01)
log_with_time(f"📊 Response generated: {len(answer_content)} chars")
history[-1]["status"] = "done"
cost_time = "{:.2f}".format(time.time() - start_time)
log_with_time(f"⏱️ Total request time: {cost_time}s")
history[-1]["footer"] = f"{cost_time}s"
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value),
}
except Exception as e:
log_with_time(f"❌ Request failed for {model_id.split('/')[-1]}: {e}")
history[-1]["loading"] = False
history[-1]["status"] = "done"
if not history[-1]["content"]:
history[-1]["content"] = []
history[-1]["content"].append({
"type": "text",
"content": f'<span style="color: var(--color-red-500)">Error: {str(e)}</span>'
})
yield {
chatbot: gr.update(value=history),
state: gr.update(value=state_value)
}
@staticmethod
def add_message(input_value, thinking_btn_state_value, model_selector_state_value, state_value):
text = input_value["text"]
files = input_value["files"]
if not state_value["conversation_id"]:
random_id = str(uuid.uuid4())
history = []
state_value["conversation_id"] = random_id
state_value["conversation_contexts"][state_value["conversation_id"]] = {"history": history}
state_value["conversations"].append({"label": text, "key": random_id})
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
state_value["conversation_contexts"][state_value["conversation_id"]] = {
"history": history,
"enable_thinking": thinking_btn_state_value["enable_thinking"],
"model_size": model_selector_state_value["model_size"]
}
history.append({
"key": str(uuid.uuid4()),
"role": "user",
"content": [{"type": "file", "content": [f for f in files]}, {"type": "text", "content": text}]
})
yield Gradio_Events.preprocess_submit(clear_input=True)(state_value)
try:
for chunk in Gradio_Events.submit(state_value):
yield chunk
except Exception as e:
raise e
finally:
yield Gradio_Events.postprocess_submit(state_value)
@staticmethod
def preprocess_submit(clear_input=True):
def preprocess_submit_handler(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
return {
**({input: gr.update(value=None, loading=True) if clear_input else gr.update(loading=True)} if clear_input else {}),
conversations: gr.update(active_key=state_value["conversation_id"],
items=list(map(lambda item: {**item, "disabled": True if item["key"] != state_value["conversation_id"] else False}, state_value["conversations"]))),
add_conversation_btn: gr.update(disabled=True),
clear_btn: gr.update(disabled=True),
conversation_delete_menu_item: gr.update(disabled=True),
chatbot: gr.update(value=history, bot_config=bot_config(disabled_actions=['edit', 'retry', 'delete']), user_config=user_config(disabled_actions=['edit', 'delete'])),
state: gr.update(value=state_value),
}
return preprocess_submit_handler
@staticmethod
def postprocess_submit(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
return {
input: gr.update(loading=False),
conversation_delete_menu_item: gr.update(disabled=False),
clear_btn: gr.update(disabled=False),
conversations: gr.update(items=state_value["conversations"]),
add_conversation_btn: gr.update(disabled=False),
chatbot: gr.update(value=history, bot_config=bot_config(), user_config=user_config()),
state: gr.update(value=state_value),
}
@staticmethod
def cancel(state_value):
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history[-1]["loading"] = False
history[-1]["status"] = "done"
history[-1]["footer"] = "Chat completion paused"
return Gradio_Events.postprocess_submit(state_value)
@staticmethod
def delete_message(state_value, e: gr.EventData):
index = e._data["payload"][0]["index"]
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history = history[:index] + history[index + 1:]
state_value["conversation_contexts"][state_value["conversation_id"]]["history"] = history
return gr.update(value=state_value)
@staticmethod
def edit_message(state_value, chatbot_value, e: gr.EventData):
index = e._data["payload"][0]["index"]
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history[index]["content"] = chatbot_value[index]["content"]
if not history[index].get("edited"):
history[index]["edited"] = True
history[index]["footer"] = ((history[index]["footer"]) + " " if history[index].get("footer") else "") + "Edited"
return gr.update(value=state_value), gr.update(value=history)
@staticmethod
def regenerate_message(thinking_btn_state_value, model_selector_state_value, state_value, e: gr.EventData):
index = e._data["payload"][0]["index"]
history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
history = history[:index]
state_value["conversation_contexts"][state_value["conversation_id"]] = {
"history": history,
"enable_thinking": thinking_btn_state_value["enable_thinking"],
"model_size": model_selector_state_value["model_size"]
}
yield Gradio_Events.preprocess_submit()(state_value)
try:
for chunk in Gradio_Events.submit(state_value):
yield chunk
except Exception as e:
raise e
finally:
yield Gradio_Events.postprocess_submit(state_value)
@staticmethod
def apply_prompt(e: gr.EventData, input_value):
input_value["text"] = e._data["payload"][0]["value"]["description"]
input_value["files"] = e._data["payload"][0]["value"]["urls"]
return gr.update(value=input_value)
@staticmethod
def new_chat(thinking_btn_state, model_selector_state, state_value):
if not state_value["conversation_id"]:
return gr.skip()
state_value["conversation_id"] = ""
thinking_btn_state["enable_thinking"] = True
model_selector_state["model_size"] = "14B"
return gr.update(active_key=state_value["conversation_id"]), gr.update(value=None), gr.update(value=thinking_btn_state), gr.update(value="14B"), gr.update(value=state_value)
@staticmethod
def select_conversation(thinking_btn_state_value, model_selector_state_value, state_value, e: gr.EventData):
active_key = e._data["payload"][0]
if state_value["conversation_id"] == active_key or (active_key not in state_value["conversation_contexts"]):
return gr.skip()
state_value["conversation_id"] = active_key
thinking_btn_state_value["enable_thinking"] = state_value["conversation_contexts"][active_key].get("enable_thinking", False)
model_size = state_value["conversation_contexts"][active_key].get("model_size", "14B")
model_selector_state_value["model_size"] = model_size
return gr.update(active_key=active_key), gr.update(value=state_value["conversation_contexts"][active_key]["history"]), gr.update(value=thinking_btn_state_value), gr.update(value=model_size), gr.update(value=state_value)
@staticmethod
def click_conversation_menu(state_value, e: gr.EventData):
conversation_id = e._data["payload"][0]["key"]
operation = e._data["payload"][1]["key"]
if operation == "delete":
del state_value["conversation_contexts"][conversation_id]
state_value["conversations"] = [item for item in state_value["conversations"] if item["key"] != conversation_id]
if state_value["conversation_id"] == conversation_id:
state_value["conversation_id"] = ""
return gr.update(items=state_value["conversations"], active_key=state_value["conversation_id"]), gr.update(value=None), gr.update(value=state_value)
else:
return gr.update(items=state_value["conversations"]), gr.skip(), gr.update(value=state_value)
return gr.skip()
@staticmethod
def clear_conversation_history(state_value):
if not state_value["conversation_id"]:
return gr.skip()
state_value["conversation_contexts"][state_value["conversation_id"]]["history"] = []
return gr.update(value=None), gr.update(value=state_value)
@staticmethod
def update_browser_state(state_value):
return gr.update(value=dict(conversations=state_value["conversations"], conversation_contexts=state_value["conversation_contexts"]))
@staticmethod
def apply_browser_state(browser_state_value, state_value):
state_value["conversations"] = browser_state_value["conversations"]
state_value["conversation_contexts"] = browser_state_value["conversation_contexts"]
return gr.update(items=browser_state_value["conversations"]), gr.update(value=state_value)
css = """
body, html {
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.gradio-container, .gradio-container.dark {
padding: 0 !important;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.gradio-container > main.fillable {
padding: 0 !important;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
}
#chatbot .ms-gr-ant-col,
#chatbot .ms-gr-antd-col,
#chatbot [class*="ms-gr-ant-col"] {
padding-left: 0 !important;
padding-right: 0 !important;
background-color: transparent !important;
}
#chatbot {
height: calc(100vh - 21px - 16px);
max-height: 1500px;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
}
#chatbot .chatbot-conversations {
height: 100vh;
background-color: var(--ms-gr-ant-color-bg-container, #FFF0C3) !important;
padding-left: 4px;
padding-right: 4px;
}
#chatbot .chatbot-conversations .chatbot-conversations-list {
padding-left: 0;
padding-right: 0;
}
#chatbot .chatbot-chat {
padding: 32px;
padding-bottom: 0;
height: 100%;
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
color: var(--ms-gr-ant-color-text, #000000) !important;
}
@media (max-width: 768px) {
#chatbot .chatbot-chat {
padding: 10px;
}
}
#chatbot .chatbot-chat .chatbot-chat-messages {
flex: 1;
background-color: transparent !important;
}
.gradio-container .contain {
background-color: transparent !important;
padding: 0 !important;
}
.user-message-content {
background-color: #ffffff !important;
background: #ffffff !important;
border-radius: 16px !important;
padding: 14px 18px !important;
border: 1px solid #E9E2CB !important;
color: #1E1E1E !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.06) !important;
max-width: fit-content;
}
[class*="chatbot"] [class*="user"] [class*="content"],
[class*="chatbot"] [class*="user"] [class*="bubble"],
[class*="chatbot"] [class*="user"] [class*="message"],
[class*="pro-chatbot"] [class*="user"] {
background-color: transparent !important;
background: transparent !important;
}
.user-message-content,
.user-message-content *:not(code):not(pre) {
background-color: inherit !important;
}
.chatbot-welcome-prompts {
background-color: var(--ms-gr-ant-color-bg-container, #FFF0C3) !important;
}
[class*="welcome"] [class*="prompt"],
[class*="welcome"] [class*="prompts"],
[class*="prompts"] [class*="item"],
[class*="prompts"] [class*="card"],
.ms-gr-antdx-prompts-item,
.ms-gr-pro-chatbot-welcome-prompts {
color: #1E1E1E !important;
}
[class*="welcome"] span,
[class*="welcome"] p,
[class*="welcome"] div,
[class*="prompts"] span,
[class*="prompts"] p,
[class*="prompts"] div,
[class*="prompts"] [class*="title"],
[class*="prompts"] [class*="description"],
.ms-gr-antdx-prompts-item span,
.ms-gr-antdx-prompts-item p,
.ms-gr-antdx-prompts-item div {
color: #1E1E1E !important;
}
[class*="prompts"] [class*="item"] {
background-color: #FFFAEB !important;
border: 1px solid #E9E2CB !important;
}
.chatbot-conversations {
background-color: var(--ms-gr-ant-color-bg-container, #FFF0C3) !important;
}
.chatbot-conversations .ms-gr-ant-typography {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.chatbot-conversations .ms-gr-ant-btn-color-primary.ms-gr-ant-btn-variant-filled {
background-color: var(--ms-gr-ant-color-primary, #FF8205) !important;
color: #ffffff !important;
border: none !important;
}
.chatbot-conversations .ms-gr-ant-btn-color-primary.ms-gr-ant-btn-variant-filled:hover {
background-color: #FA500F !important;
transform: translateY(-1px);
}
.chatbot-conversations .ms-gr-ant-conversations {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.chatbot-conversations .ms-gr-ant-conversations-item {
color: var(--ms-gr-ant-color-text, #000000) !important;
background-color: transparent !important;
}
.chatbot-conversations .ms-gr-ant-conversations-item:hover {
background-color: var(--ms-gr-ant-color-bg-elevated, #E9E2CB) !important;
}
.ant-typography {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
.ant-flex {
color: var(--ms-gr-ant-color-text, #000000) !important;
}
#chatbot > .ant-col {
background-color: var(--ms-gr-ant-color-bg-layout, #FFFAEB) !important;
}
h1, h2, h3, h4, h5, h6, p, span {
color: var(--ms-gr-ant-color-text);
}
.ms-gr-pro-chatbot-bot,
.ms-gr-pro-chatbot-bot *,
.ms-gr-pro-chatbot-bot .ms-gr-pro-chatbot-message-content,
.ms-gr-pro-chatbot-bot [class*="content"],
[class*="chatbot"] [class*="bot"],
[class*="chatbot"] [class*="bot"] * {
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot h1,
.ms-gr-pro-chatbot-bot h2,
.ms-gr-pro-chatbot-bot h3,
.ms-gr-pro-chatbot-bot h4,
.ms-gr-pro-chatbot-bot h5,
.ms-gr-pro-chatbot-bot h6,
.ms-gr-pro-chatbot-bot strong,
.ms-gr-pro-chatbot-bot b,
.ms-gr-pro-chatbot-bot em,
.ms-gr-pro-chatbot-bot i,
.ms-gr-pro-chatbot-bot p,
.ms-gr-pro-chatbot-bot span,
.ms-gr-pro-chatbot-bot li,
.ms-gr-pro-chatbot-bot ul,
.ms-gr-pro-chatbot-bot ol,
.ms-gr-pro-chatbot-bot a,
[class*="chatbot"] [class*="bot"] h1,
[class*="chatbot"] [class*="bot"] h2,
[class*="chatbot"] [class*="bot"] h3,
[class*="chatbot"] [class*="bot"] strong,
[class*="chatbot"] [class*="bot"] b,
[class*="chatbot"] [class*="bot"] p,
[class*="chatbot"] [class*="bot"] span,
[class*="chatbot"] [class*="bot"] li {
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot [style*="color"],
[class*="chatbot"] [class*="bot"] [style*="color"],
[class*="chatbot"] [class*="bot"] [style] {
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot pre,
.ms-gr-pro-chatbot-bot pre code {
background-color: #E9E2CB !important;
color: #1E1E1E !important;
}
.ms-gr-pro-chatbot-bot code:not(pre code) {
background-color: #E9E2CB !important;
color: #1E1E1E !important;
padding: 2px 6px;
border-radius: 4px;
}
footer {
display: none !important;
}
.footer {
display: none !important;
}
*, *::before, *::after {
transition: none !important;
}
"""
with gr.Blocks(
fill_width=True,
css=css,
theme=gr.themes.Default(primary_hue="orange", secondary_hue="gray", neutral_hue="gray")
) as demo:
state = gr.State({"conversation_contexts": {}, "conversations": [], "conversation_id": "", "oss_cache": {}})
thinking_btn_state = gr.State({"enable_thinking": False})
model_selector_state = gr.State({"model_size": "14B"})
with ms.Application(), antdx.XProvider(theme=LIGHT_THEME), ms.AutoLoading():
with antd.Row(gutter=[20, 20], wrap=False, elem_id="chatbot"):
with antd.Col(md=dict(flex="0 0 260px", span=24, order=0), span=0, order=1, elem_style=dict(width=0)):
with ms.Div(elem_classes="chatbot-conversations"):
with antd.Flex(vertical=True, gap="small", elem_style=dict(height="100%")):
with antd.Flex(vertical=True, gap="small", align="center", elem_style=dict(padding=8)):
with antd.Typography.Title(level=1, elem_style=dict(fontSize=24, margin=0)):
with antd.Flex(align="center", gap="small", justify="center"):
antd.Image('./assets/m-boxed-rainbow.png', preview=False, alt="logo", width=24, height=24)
ms.Span("Ministrals Demo")
with antd.Button(value=None, color="primary", variant="filled", block=True) as add_conversation_btn:
ms.Text("New Conversation")
with ms.Slot("icon"):
antd.Icon("PlusOutlined")
with antdx.Conversations(elem_classes="chatbot-conversations-list") as conversations:
with ms.Slot('menu.items'):
with antd.Menu.Item(label="Delete", key="delete", danger=True) as conversation_delete_menu_item:
with ms.Slot("icon"):
antd.Icon("DeleteOutlined")
with antd.Col(flex=1, elem_style=dict(height="100%")):
with antd.Flex(vertical=True, gap="small", elem_classes="chatbot-chat"):
with antd.Flex(align="center", gap="large", elem_style=dict(paddingBottom=10)):
antd.Typography.Title("Hello, I'm Ministral", level=3, elem_style=dict(margin=0))
with antd.Flex(align="center", gap="small"):
ms.Span("currently using:", elem_style=dict(fontSize=12))
model_display = antd.Typography.Text(
value="mistralai/Ministral-3-14B-Instruct-2512",
copyable=True, code=True,
elem_style=dict(fontSize=12, color="var(--ms-gr-ant-color-text-secondary)")
)
chatbot = pro.Chatbot(elem_classes="chatbot-chat-messages", height=0,
markdown_config=markdown_config(), welcome_config=welcome_config(),
user_config=user_config(), bot_config=bot_config())
with pro.MultimodalInput(placeholder="How can I help you today?", upload_config=upload_config()) as input:
with ms.Slot("prefix"):
with antd.Flex(gap=4, wrap=True, elem_style=dict(maxWidth='40vw', display="inline-flex")):
with antd.Button(value=None, type="text") as clear_btn:
with ms.Slot("icon"):
antd.Icon("ClearOutlined")
model_selector = antd.Select(
value=DEFAULT_MODEL_SIZE, default_value=DEFAULT_MODEL_SIZE,
options=[{"label": "Ministral-3-14B", "value": "14B"}, {"label": "Ministral-3-8B", "value": "8B"}, {"label": "Ministral-3-3B", "value": "3B"}],
elem_style=dict(width=180)
)
with antd.Button("Thinking", shape="round", color="primary") as thinking_btn:
with ms.Slot("icon"):
antd.Icon("SunOutlined")
def toggle_thinking(state_value):
state_value["enable_thinking"] = not state_value["enable_thinking"]
return gr.update(value=state_value)
def apply_thinking_style(state_value):
return gr.update(variant="solid" if state_value["enable_thinking"] else "")
def update_model_size(value, state_value):
state_value["model_size"] = value
return gr.update(value=state_value)
def update_model_display(thinking_state, model_state):
model_size = model_state.get("model_size", "14B")
model_type = "reasoning" if thinking_state.get("enable_thinking", False) else "instruct"
model_name = MINISTRAL_MODELS[model_size][model_type]
return gr.update(value=model_name)
thinking_btn_state.change(fn=apply_thinking_style, inputs=[thinking_btn_state], outputs=[thinking_btn])
thinking_btn_state.change(fn=update_model_display, inputs=[thinking_btn_state, model_selector_state], outputs=[model_display])
thinking_btn.click(fn=toggle_thinking, inputs=[thinking_btn_state], outputs=[thinking_btn_state])
model_selector.change(fn=update_model_size, inputs=[model_selector, model_selector_state], outputs=[model_selector_state])
model_selector_state.change(fn=update_model_display, inputs=[thinking_btn_state, model_selector_state], outputs=[model_display])
if save_history:
browser_state = gr.BrowserState({"conversation_contexts": {}, "conversations": []}, storage_key="ministral_demo_storage")
state.change(fn=Gradio_Events.update_browser_state, inputs=[state], outputs=[browser_state])
demo.load(fn=Gradio_Events.apply_browser_state, inputs=[browser_state, state], outputs=[conversations, state])
add_conversation_btn.click(fn=Gradio_Events.new_chat, inputs=[thinking_btn_state, model_selector_state, state], outputs=[conversations, chatbot, thinking_btn_state, model_selector, state])
conversations.active_change(fn=Gradio_Events.select_conversation, inputs=[thinking_btn_state, model_selector_state, state], outputs=[conversations, chatbot, thinking_btn_state, model_selector, state])
conversations.menu_click(fn=Gradio_Events.click_conversation_menu, inputs=[state], outputs=[conversations, chatbot, state])
chatbot.welcome_prompt_select(fn=Gradio_Events.apply_prompt, inputs=[input], outputs=[input])
chatbot.delete(fn=Gradio_Events.delete_message, inputs=[state], outputs=[state])
chatbot.edit(fn=Gradio_Events.edit_message, inputs=[state, chatbot], outputs=[state, chatbot])
regenerating_event = chatbot.retry(fn=Gradio_Events.regenerate_message, inputs=[thinking_btn_state, model_selector_state, state],
outputs=[input, clear_btn, conversation_delete_menu_item, add_conversation_btn, conversations, chatbot, state])
submit_event = input.submit(fn=Gradio_Events.add_message, inputs=[input, thinking_btn_state, model_selector_state, state],
outputs=[input, clear_btn, conversation_delete_menu_item, add_conversation_btn, conversations, chatbot, state])
input.cancel(fn=Gradio_Events.cancel, inputs=[state],
outputs=[input, conversation_delete_menu_item, clear_btn, conversations, add_conversation_btn, chatbot, state],
cancels=[submit_event, regenerating_event], queue=False)
clear_btn.click(fn=Gradio_Events.clear_conversation_history, inputs=[state], outputs=[chatbot, state])
if __name__ == "__main__":
demo.queue(default_concurrency_limit=100, max_size=100).launch(ssr_mode=False, max_threads=100, show_api=False)
|