Upload dc.py
Browse files
dc.py
CHANGED
|
@@ -1,52 +1,33 @@
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
from stablepy import Model_Diffusers
|
| 4 |
-
from constants import (
|
| 5 |
-
PREPROCESSOR_CONTROLNET,
|
| 6 |
-
TASK_STABLEPY,
|
| 7 |
-
TASK_MODEL_LIST,
|
| 8 |
-
UPSCALER_DICT_GUI,
|
| 9 |
-
UPSCALER_KEYS,
|
| 10 |
-
PROMPT_W_OPTIONS,
|
| 11 |
-
WARNING_MSG_VAE,
|
| 12 |
-
SDXL_TASK,
|
| 13 |
-
MODEL_TYPE_TASK,
|
| 14 |
-
POST_PROCESSING_SAMPLER,
|
| 15 |
-
|
| 16 |
-
)
|
| 17 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
|
| 18 |
import torch
|
| 19 |
import re
|
|
|
|
| 20 |
from stablepy import (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
scheduler_names,
|
|
|
|
| 22 |
IP_ADAPTERS_SD,
|
| 23 |
IP_ADAPTERS_SDXL,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
import time
|
| 26 |
from PIL import ImageFile
|
| 27 |
-
|
| 28 |
-
get_model_list,
|
| 29 |
-
extract_parameters,
|
| 30 |
-
get_model_type,
|
| 31 |
-
extract_exif_data,
|
| 32 |
-
create_mask_now,
|
| 33 |
-
download_diffuser_repo,
|
| 34 |
-
progress_step_bar,
|
| 35 |
-
html_template_message,
|
| 36 |
-
)
|
| 37 |
-
from datetime import datetime
|
| 38 |
-
import gradio as gr
|
| 39 |
-
import logging
|
| 40 |
-
import diffusers
|
| 41 |
-
import warnings
|
| 42 |
-
from stablepy import logger
|
| 43 |
-
# import urllib.parse
|
| 44 |
|
| 45 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 46 |
-
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
| 47 |
print(os.getenv("SPACES_ZERO_GPU"))
|
| 48 |
|
| 49 |
-
## BEGIN MOD
|
| 50 |
import gradio as gr
|
| 51 |
import logging
|
| 52 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
|
@@ -57,63 +38,205 @@ warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffuse
|
|
| 57 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
| 58 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
| 59 |
from stablepy import logger
|
| 60 |
-
logger.setLevel(logging.
|
| 61 |
|
| 62 |
from env import (
|
| 63 |
-
HF_TOKEN,
|
| 64 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 65 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
| 66 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
| 72 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
| 73 |
get_tupled_model_list, get_lora_model_list, download_private_repo, download_things)
|
| 74 |
|
| 75 |
# - **Download Models**
|
| 76 |
-
download_model = ", ".join(
|
| 77 |
# - **Download VAEs**
|
| 78 |
-
download_vae = ", ".join(
|
| 79 |
# - **Download LoRAs**
|
| 80 |
-
download_lora = ", ".join(
|
| 81 |
|
| 82 |
-
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO,
|
| 83 |
-
download_private_repo(HF_VAE_PRIVATE_REPO,
|
| 84 |
|
| 85 |
-
load_diffusers_format_model = list_uniq(
|
| 86 |
## END MOD
|
| 87 |
|
| 88 |
# Download stuffs
|
| 89 |
for url in [url.strip() for url in download_model.split(',')]:
|
| 90 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
| 91 |
-
download_things(
|
| 92 |
for url in [url.strip() for url in download_vae.split(',')]:
|
| 93 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
| 94 |
-
download_things(
|
| 95 |
for url in [url.strip() for url in download_lora.split(',')]:
|
| 96 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
| 97 |
-
download_things(
|
| 98 |
|
| 99 |
# Download Embeddings
|
| 100 |
-
for url_embed in
|
| 101 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
| 102 |
-
download_things(
|
| 103 |
|
| 104 |
# Build list models
|
| 105 |
-
embed_list = get_model_list(
|
| 106 |
-
model_list = get_model_list(
|
| 107 |
model_list = load_diffusers_format_model + model_list
|
| 108 |
-
|
| 109 |
## BEGIN MOD
|
| 110 |
lora_model_list = get_lora_model_list()
|
| 111 |
-
vae_model_list = get_model_list(
|
| 112 |
vae_model_list.insert(0, "None")
|
| 113 |
|
| 114 |
-
#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO,
|
| 115 |
-
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
| 116 |
-
embed_sdxl_list = get_model_list(
|
| 117 |
|
| 118 |
def get_embed_list(pipeline_name):
|
| 119 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
|
@@ -121,13 +244,99 @@ def get_embed_list(pipeline_name):
|
|
| 121 |
|
| 122 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
## BEGIN MOD
|
| 125 |
class GuiSD:
|
| 126 |
-
def __init__(self
|
| 127 |
self.model = None
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
|
| 133 |
#progress(0, desc="Start inference...")
|
|
@@ -141,86 +350,31 @@ class GuiSD:
|
|
| 141 |
return img
|
| 142 |
|
| 143 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
| 144 |
-
vae_model = vae_model if vae_model != "None" else None
|
| 145 |
-
model_type = get_model_type(model_name)
|
| 146 |
-
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
| 147 |
-
|
| 148 |
-
if not os.path.exists(model_name):
|
| 149 |
-
_ = download_diffuser_repo(
|
| 150 |
-
repo_name=model_name,
|
| 151 |
-
model_type=model_type,
|
| 152 |
-
revision="main",
|
| 153 |
-
token=True,
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
for i in range(68):
|
| 157 |
-
if not self.status_loading:
|
| 158 |
-
self.status_loading = True
|
| 159 |
-
if i > 0:
|
| 160 |
-
time.sleep(self.sleep_loading)
|
| 161 |
-
print("Previous model ops...")
|
| 162 |
-
break
|
| 163 |
-
time.sleep(0.5)
|
| 164 |
-
print(f"Waiting queue {i}")
|
| 165 |
-
#yield "Waiting queue"
|
| 166 |
-
|
| 167 |
-
self.status_loading = True
|
| 168 |
|
| 169 |
#yield f"Loading model: {model_name}"
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
if vae_model:
|
| 172 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
| 173 |
if model_type != vae_type:
|
| 174 |
-
gr.Warning(
|
| 175 |
-
|
| 176 |
-
print("Loading model...")
|
| 177 |
-
|
| 178 |
-
try:
|
| 179 |
-
start_time = time.time()
|
| 180 |
-
|
| 181 |
-
if self.model is None:
|
| 182 |
-
self.model = Model_Diffusers(
|
| 183 |
-
base_model_id=model_name,
|
| 184 |
-
task_name=TASK_STABLEPY[task],
|
| 185 |
-
vae_model=vae_model,
|
| 186 |
-
type_model_precision=dtype_model,
|
| 187 |
-
retain_task_model_in_cache=False,
|
| 188 |
-
device="cpu",
|
| 189 |
-
)
|
| 190 |
-
else:
|
| 191 |
-
|
| 192 |
-
if self.model.base_model_id != model_name:
|
| 193 |
-
load_now_time = datetime.now()
|
| 194 |
-
elapsed_time = (load_now_time - self.last_load).total_seconds()
|
| 195 |
-
|
| 196 |
-
if elapsed_time <= 8:
|
| 197 |
-
print("Waiting for the previous model's time ops...")
|
| 198 |
-
time.sleep(8-elapsed_time)
|
| 199 |
-
|
| 200 |
-
self.model.device = torch.device("cpu")
|
| 201 |
-
self.model.load_pipe(
|
| 202 |
-
model_name,
|
| 203 |
-
task_name=TASK_STABLEPY[task],
|
| 204 |
-
vae_model=vae_model,
|
| 205 |
-
type_model_precision=dtype_model,
|
| 206 |
-
retain_task_model_in_cache=False,
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
end_time = time.time()
|
| 210 |
-
self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
|
| 211 |
-
except Exception as e:
|
| 212 |
-
self.last_load = datetime.now()
|
| 213 |
-
self.status_loading = False
|
| 214 |
-
self.sleep_loading = 4
|
| 215 |
-
raise e
|
| 216 |
-
|
| 217 |
-
self.last_load = datetime.now()
|
| 218 |
-
self.status_loading = False
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
#yield f"Model loaded: {model_name}"
|
| 221 |
|
| 222 |
#@spaces.GPU
|
| 223 |
-
|
| 224 |
def generate_pipeline(
|
| 225 |
self,
|
| 226 |
prompt,
|
|
@@ -325,24 +479,23 @@ class GuiSD:
|
|
| 325 |
mode_ip2,
|
| 326 |
scale_ip2,
|
| 327 |
pag_scale,
|
|
|
|
| 328 |
):
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
vae_model = vae_model if vae_model != "None" else None
|
| 333 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
| 334 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 335 |
msg_lora = ""
|
| 336 |
|
|
|
|
|
|
|
| 337 |
## BEGIN MOD
|
| 338 |
-
loras_list = [s if s else "None" for s in loras_list]
|
| 339 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
| 340 |
global lora_model_list
|
| 341 |
lora_model_list = get_lora_model_list()
|
| 342 |
## END MOD
|
| 343 |
|
| 344 |
-
print("Config model:", model_name, vae_model, loras_list)
|
| 345 |
-
|
| 346 |
task = TASK_STABLEPY[task]
|
| 347 |
|
| 348 |
params_ip_img = []
|
|
@@ -365,9 +518,6 @@ class GuiSD:
|
|
| 365 |
params_ip_mode.append(modeip)
|
| 366 |
params_ip_scale.append(scaleip)
|
| 367 |
|
| 368 |
-
concurrency = 5
|
| 369 |
-
self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)
|
| 370 |
-
|
| 371 |
if task != "txt2img" and not image_control:
|
| 372 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
| 373 |
|
|
@@ -439,15 +589,15 @@ class GuiSD:
|
|
| 439 |
"high_threshold": high_threshold,
|
| 440 |
"value_threshold": value_threshold,
|
| 441 |
"distance_threshold": distance_threshold,
|
| 442 |
-
"lora_A": lora1 if lora1 != "None" else None,
|
| 443 |
"lora_scale_A": lora_scale1,
|
| 444 |
-
"lora_B": lora2 if lora2 != "None" else None,
|
| 445 |
"lora_scale_B": lora_scale2,
|
| 446 |
-
"lora_C": lora3 if lora3 != "None" else None,
|
| 447 |
"lora_scale_C": lora_scale3,
|
| 448 |
-
"lora_D": lora4 if lora4 != "None" else None,
|
| 449 |
"lora_scale_D": lora_scale4,
|
| 450 |
-
"lora_E": lora5 if lora5 != "None" else None,
|
| 451 |
"lora_scale_E": lora_scale5,
|
| 452 |
## BEGIN MOD
|
| 453 |
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
|
|
@@ -497,59 +647,18 @@ class GuiSD:
|
|
| 497 |
}
|
| 498 |
|
| 499 |
self.model.device = torch.device("cuda:0")
|
| 500 |
-
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
|
| 501 |
self.model.pipe.transformer.to(self.model.device)
|
| 502 |
print("transformer to cuda")
|
| 503 |
|
| 504 |
-
#
|
| 505 |
-
|
| 506 |
-
actual_progress = 0
|
| 507 |
-
info_images = gr.update()
|
| 508 |
-
for img, seed, image_path, metadata in self.model(**pipe_params):
|
| 509 |
-
info_state = progress_step_bar(actual_progress, steps)
|
| 510 |
-
actual_progress += concurrency
|
| 511 |
-
if image_path:
|
| 512 |
-
info_images = f"Seeds: {str(seed)}"
|
| 513 |
-
if vae_msg:
|
| 514 |
-
info_images = info_images + "<br>" + vae_msg
|
| 515 |
-
|
| 516 |
-
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
|
| 517 |
-
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
|
| 518 |
-
print(msg_ram)
|
| 519 |
-
msg_lora += f"<br>{msg_ram}"
|
| 520 |
-
|
| 521 |
-
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
|
| 522 |
-
if status:
|
| 523 |
-
msg_lora += f"<br>Loaded: {lora}"
|
| 524 |
-
elif status is not None:
|
| 525 |
-
msg_lora += f"<br>Error with: {lora}"
|
| 526 |
-
|
| 527 |
-
if msg_lora:
|
| 528 |
-
info_images += msg_lora
|
| 529 |
-
|
| 530 |
-
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + metadata[0].replace("\n", "<br>") + "<br>-------<br>"
|
| 531 |
-
|
| 532 |
-
download_links = "<br>".join(
|
| 533 |
-
[
|
| 534 |
-
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
|
| 535 |
-
for i, path in enumerate(image_path)
|
| 536 |
-
]
|
| 537 |
-
)
|
| 538 |
-
if save_generated_images:
|
| 539 |
-
info_images += f"<br>{download_links}"
|
| 540 |
|
| 541 |
-
|
| 542 |
-
|
| 543 |
## END MOD
|
| 544 |
|
| 545 |
-
info_state = "COMPLETE"
|
| 546 |
-
|
| 547 |
-
#yield info_state, img, info_images
|
| 548 |
-
return info_state, img, info_images
|
| 549 |
-
|
| 550 |
def dynamic_gpu_duration(func, duration, *args):
|
| 551 |
|
| 552 |
-
@torch.inference_mode()
|
| 553 |
@spaces.GPU(duration=duration)
|
| 554 |
def wrapped_func():
|
| 555 |
return func(*args)
|
|
@@ -569,7 +678,7 @@ def sd_gen_generate_pipeline(*args):
|
|
| 569 |
load_lora_cpu = args[-3]
|
| 570 |
generation_args = args[:-3]
|
| 571 |
lora_list = [
|
| 572 |
-
None if item == "None" or item == "" else item
|
| 573 |
for item in [args[7], args[9], args[11], args[13], args[15]]
|
| 574 |
]
|
| 575 |
lora_status = [None] * 5
|
|
@@ -579,7 +688,7 @@ def sd_gen_generate_pipeline(*args):
|
|
| 579 |
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
| 580 |
|
| 581 |
#if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
|
| 582 |
-
# yield
|
| 583 |
|
| 584 |
# Load lora in CPU
|
| 585 |
if load_lora_cpu:
|
|
@@ -605,16 +714,14 @@ def sd_gen_generate_pipeline(*args):
|
|
| 605 |
)
|
| 606 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
| 607 |
|
| 608 |
-
|
| 609 |
-
if verbose_arg:
|
| 610 |
gr.Info(msg_request)
|
| 611 |
print(msg_request)
|
| 612 |
-
|
|
|
|
| 613 |
|
| 614 |
start_time = time.time()
|
| 615 |
|
| 616 |
-
# yield from sd_gen.generate_pipeline(*generation_args)
|
| 617 |
-
#yield from dynamic_gpu_duration(
|
| 618 |
return dynamic_gpu_duration(
|
| 619 |
sd_gen.generate_pipeline,
|
| 620 |
gpu_duration_arg,
|
|
@@ -622,19 +729,31 @@ def sd_gen_generate_pipeline(*args):
|
|
| 622 |
)
|
| 623 |
|
| 624 |
end_time = time.time()
|
| 625 |
-
execution_time = end_time - start_time
|
| 626 |
-
msg_task_complete = (
|
| 627 |
-
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
|
| 628 |
-
)
|
| 629 |
|
| 630 |
if verbose_arg:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
gr.Info(msg_task_complete)
|
| 632 |
print(msg_task_complete)
|
| 633 |
|
| 634 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
|
|
|
|
| 636 |
|
| 637 |
-
|
|
|
|
|
|
|
|
|
|
| 638 |
def esrgan_upscale(image, upscaler_name, upscaler_size):
|
| 639 |
if image is None: return None
|
| 640 |
|
|
@@ -656,21 +775,18 @@ def esrgan_upscale(image, upscaler_name, upscaler_size):
|
|
| 656 |
|
| 657 |
return image_path
|
| 658 |
|
| 659 |
-
|
| 660 |
dynamic_gpu_duration.zerogpu = True
|
| 661 |
sd_gen_generate_pipeline.zerogpu = True
|
| 662 |
-
sd_gen = GuiSD()
|
| 663 |
-
|
| 664 |
|
| 665 |
from pathlib import Path
|
| 666 |
from PIL import Image
|
| 667 |
import random, json
|
| 668 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
| 669 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
| 670 |
-
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD,
|
| 671 |
-
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en
|
| 672 |
-
|
| 673 |
|
|
|
|
| 674 |
#@spaces.GPU
|
| 675 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
| 676 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
|
@@ -685,7 +801,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
| 685 |
gpu_duration = 59
|
| 686 |
|
| 687 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
| 688 |
-
|
| 689 |
progress(0, desc="Preparing...")
|
| 690 |
|
| 691 |
if randomize_seed:
|
|
@@ -712,7 +828,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
| 712 |
sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0])
|
| 713 |
progress(1, desc="Model loaded.")
|
| 714 |
progress(0, desc="Starting Inference...")
|
| 715 |
-
|
| 716 |
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
| 717 |
lora4, lora4_wt, lora5, lora5_wt, sampler,
|
| 718 |
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
|
@@ -892,14 +1008,14 @@ def update_lora_dict(path: str):
|
|
| 892 |
def download_lora(dl_urls: str):
|
| 893 |
global loras_url_to_path_dict
|
| 894 |
dl_path = ""
|
| 895 |
-
before = get_local_model_list(
|
| 896 |
urls = []
|
| 897 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
| 898 |
-
local_path = f"{
|
| 899 |
if not Path(local_path).exists():
|
| 900 |
-
download_things(
|
| 901 |
urls.append(url)
|
| 902 |
-
after = get_local_model_list(
|
| 903 |
new_files = list_sub(after, before)
|
| 904 |
i = 0
|
| 905 |
for file in new_files:
|
|
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
from stablepy import Model_Diffusers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
| 5 |
+
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
|
| 6 |
import torch
|
| 7 |
import re
|
| 8 |
+
from huggingface_hub import HfApi
|
| 9 |
from stablepy import (
|
| 10 |
+
CONTROLNET_MODEL_IDS,
|
| 11 |
+
VALID_TASKS,
|
| 12 |
+
T2I_PREPROCESSOR_NAME,
|
| 13 |
+
FLASH_LORA,
|
| 14 |
+
SCHEDULER_CONFIG_MAP,
|
| 15 |
scheduler_names,
|
| 16 |
+
IP_ADAPTER_MODELS,
|
| 17 |
IP_ADAPTERS_SD,
|
| 18 |
IP_ADAPTERS_SDXL,
|
| 19 |
+
REPO_IMAGE_ENCODER,
|
| 20 |
+
ALL_PROMPT_WEIGHT_OPTIONS,
|
| 21 |
+
SD15_TASKS,
|
| 22 |
+
SDXL_TASKS,
|
| 23 |
)
|
| 24 |
import time
|
| 25 |
from PIL import ImageFile
|
| 26 |
+
#import urllib.parse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
| 29 |
print(os.getenv("SPACES_ZERO_GPU"))
|
| 30 |
|
|
|
|
| 31 |
import gradio as gr
|
| 32 |
import logging
|
| 33 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
|
|
|
| 38 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
| 39 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
| 40 |
from stablepy import logger
|
| 41 |
+
logger.setLevel(logging.CRITICAL)
|
| 42 |
|
| 43 |
from env import (
|
| 44 |
+
HF_TOKEN, hf_read_token, # to use only for private repos
|
| 45 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
| 46 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
| 47 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
| 48 |
+
directory_models, directory_loras, directory_vaes, directory_embeds,
|
| 49 |
+
directory_embeds_sdxl, directory_embeds_positive_sdxl,
|
| 50 |
+
load_diffusers_format_model, download_model_list, download_lora_list,
|
| 51 |
+
download_vae_list, download_embeds)
|
| 52 |
+
|
| 53 |
+
PREPROCESSOR_CONTROLNET = {
|
| 54 |
+
"openpose": [
|
| 55 |
+
"Openpose",
|
| 56 |
+
"None",
|
| 57 |
+
],
|
| 58 |
+
"scribble": [
|
| 59 |
+
"HED",
|
| 60 |
+
"PidiNet",
|
| 61 |
+
"None",
|
| 62 |
+
],
|
| 63 |
+
"softedge": [
|
| 64 |
+
"PidiNet",
|
| 65 |
+
"HED",
|
| 66 |
+
"HED safe",
|
| 67 |
+
"PidiNet safe",
|
| 68 |
+
"None",
|
| 69 |
+
],
|
| 70 |
+
"segmentation": [
|
| 71 |
+
"UPerNet",
|
| 72 |
+
"None",
|
| 73 |
+
],
|
| 74 |
+
"depth": [
|
| 75 |
+
"DPT",
|
| 76 |
+
"Midas",
|
| 77 |
+
"None",
|
| 78 |
+
],
|
| 79 |
+
"normalbae": [
|
| 80 |
+
"NormalBae",
|
| 81 |
+
"None",
|
| 82 |
+
],
|
| 83 |
+
"lineart": [
|
| 84 |
+
"Lineart",
|
| 85 |
+
"Lineart coarse",
|
| 86 |
+
"Lineart (anime)",
|
| 87 |
+
"None",
|
| 88 |
+
"None (anime)",
|
| 89 |
+
],
|
| 90 |
+
"lineart_anime": [
|
| 91 |
+
"Lineart",
|
| 92 |
+
"Lineart coarse",
|
| 93 |
+
"Lineart (anime)",
|
| 94 |
+
"None",
|
| 95 |
+
"None (anime)",
|
| 96 |
+
],
|
| 97 |
+
"shuffle": [
|
| 98 |
+
"ContentShuffle",
|
| 99 |
+
"None",
|
| 100 |
+
],
|
| 101 |
+
"canny": [
|
| 102 |
+
"Canny",
|
| 103 |
+
"None",
|
| 104 |
+
],
|
| 105 |
+
"mlsd": [
|
| 106 |
+
"MLSD",
|
| 107 |
+
"None",
|
| 108 |
+
],
|
| 109 |
+
"ip2p": [
|
| 110 |
+
"ip2p"
|
| 111 |
+
],
|
| 112 |
+
"recolor": [
|
| 113 |
+
"Recolor luminance",
|
| 114 |
+
"Recolor intensity",
|
| 115 |
+
"None",
|
| 116 |
+
],
|
| 117 |
+
"tile": [
|
| 118 |
+
"Mild Blur",
|
| 119 |
+
"Moderate Blur",
|
| 120 |
+
"Heavy Blur",
|
| 121 |
+
"None",
|
| 122 |
+
],
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
TASK_STABLEPY = {
|
| 126 |
+
'txt2img': 'txt2img',
|
| 127 |
+
'img2img': 'img2img',
|
| 128 |
+
'inpaint': 'inpaint',
|
| 129 |
+
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
|
| 130 |
+
# 'sketch T2I Adapter': 'sdxl_sketch_t2i',
|
| 131 |
+
# 'lineart T2I Adapter': 'sdxl_lineart_t2i',
|
| 132 |
+
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i',
|
| 133 |
+
# 'openpose T2I Adapter': 'sdxl_openpose_t2i',
|
| 134 |
+
'openpose ControlNet': 'openpose',
|
| 135 |
+
'canny ControlNet': 'canny',
|
| 136 |
+
'mlsd ControlNet': 'mlsd',
|
| 137 |
+
'scribble ControlNet': 'scribble',
|
| 138 |
+
'softedge ControlNet': 'softedge',
|
| 139 |
+
'segmentation ControlNet': 'segmentation',
|
| 140 |
+
'depth ControlNet': 'depth',
|
| 141 |
+
'normalbae ControlNet': 'normalbae',
|
| 142 |
+
'lineart ControlNet': 'lineart',
|
| 143 |
+
'lineart_anime ControlNet': 'lineart_anime',
|
| 144 |
+
'shuffle ControlNet': 'shuffle',
|
| 145 |
+
'ip2p ControlNet': 'ip2p',
|
| 146 |
+
'optical pattern ControlNet': 'pattern',
|
| 147 |
+
'recolor ControlNet': 'recolor',
|
| 148 |
+
'tile ControlNet': 'tile',
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
|
| 152 |
+
|
| 153 |
+
UPSCALER_DICT_GUI = {
|
| 154 |
+
None: None,
|
| 155 |
+
"Lanczos": "Lanczos",
|
| 156 |
+
"Nearest": "Nearest",
|
| 157 |
+
'Latent': 'Latent',
|
| 158 |
+
'Latent (antialiased)': 'Latent (antialiased)',
|
| 159 |
+
'Latent (bicubic)': 'Latent (bicubic)',
|
| 160 |
+
'Latent (bicubic antialiased)': 'Latent (bicubic antialiased)',
|
| 161 |
+
'Latent (nearest)': 'Latent (nearest)',
|
| 162 |
+
'Latent (nearest-exact)': 'Latent (nearest-exact)',
|
| 163 |
+
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
| 164 |
+
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
| 165 |
+
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
| 166 |
+
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
| 167 |
+
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
| 168 |
+
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
| 169 |
+
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
| 170 |
+
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
| 171 |
+
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
| 172 |
+
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
| 173 |
+
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
| 174 |
+
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
| 175 |
+
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
| 176 |
+
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def get_model_list(directory_path):
|
| 183 |
+
model_list = []
|
| 184 |
+
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
| 185 |
+
|
| 186 |
+
for filename in os.listdir(directory_path):
|
| 187 |
+
if os.path.splitext(filename)[1] in valid_extensions:
|
| 188 |
+
# name_without_extension = os.path.splitext(filename)[0]
|
| 189 |
+
file_path = os.path.join(directory_path, filename)
|
| 190 |
+
# model_list.append((name_without_extension, file_path))
|
| 191 |
+
model_list.append(file_path)
|
| 192 |
+
print('\033[34mFILE: ' + file_path + '\033[0m')
|
| 193 |
+
return model_list
|
| 194 |
|
| 195 |
+
## BEGIN MOD
|
| 196 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
| 197 |
get_tupled_model_list, get_lora_model_list, download_private_repo, download_things)
|
| 198 |
|
| 199 |
# - **Download Models**
|
| 200 |
+
download_model = ", ".join(download_model_list)
|
| 201 |
# - **Download VAEs**
|
| 202 |
+
download_vae = ", ".join(download_vae_list)
|
| 203 |
# - **Download LoRAs**
|
| 204 |
+
download_lora = ", ".join(download_lora_list)
|
| 205 |
|
| 206 |
+
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, directory_loras, True)
|
| 207 |
+
download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)
|
| 208 |
|
| 209 |
+
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
|
| 210 |
## END MOD
|
| 211 |
|
| 212 |
# Download stuffs
|
| 213 |
for url in [url.strip() for url in download_model.split(',')]:
|
| 214 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
| 215 |
+
download_things(directory_models, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 216 |
for url in [url.strip() for url in download_vae.split(',')]:
|
| 217 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
| 218 |
+
download_things(directory_vaes, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 219 |
for url in [url.strip() for url in download_lora.split(',')]:
|
| 220 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
| 221 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 222 |
|
| 223 |
# Download Embeddings
|
| 224 |
+
for url_embed in download_embeds:
|
| 225 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
| 226 |
+
download_things(directory_embeds, url_embed, HF_TOKEN, CIVITAI_API_KEY)
|
| 227 |
|
| 228 |
# Build list models
|
| 229 |
+
embed_list = get_model_list(directory_embeds)
|
| 230 |
+
model_list = get_model_list(directory_models)
|
| 231 |
model_list = load_diffusers_format_model + model_list
|
|
|
|
| 232 |
## BEGIN MOD
|
| 233 |
lora_model_list = get_lora_model_list()
|
| 234 |
+
vae_model_list = get_model_list(directory_vaes)
|
| 235 |
vae_model_list.insert(0, "None")
|
| 236 |
|
| 237 |
+
#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, directory_embeds_sdxl, False)
|
| 238 |
+
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, directory_embeds_positive_sdxl, False)
|
| 239 |
+
embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directory_embeds_positive_sdxl)
|
| 240 |
|
| 241 |
def get_embed_list(pipeline_name):
|
| 242 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
|
|
|
| 244 |
|
| 245 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 246 |
|
| 247 |
+
msg_inc_vae = (
|
| 248 |
+
"Use the right VAE for your model to maintain image quality. The wrong"
|
| 249 |
+
" VAE can lead to poor results, like blurriness in the generated images."
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
|
| 253 |
+
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
|
| 254 |
+
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
|
| 255 |
+
|
| 256 |
+
MODEL_TYPE_TASK = {
|
| 257 |
+
"SD 1.5": SD_TASK,
|
| 258 |
+
"SDXL": SDXL_TASK,
|
| 259 |
+
"FLUX": FLUX_TASK,
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
MODEL_TYPE_CLASS = {
|
| 263 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
| 264 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
| 265 |
+
"diffusers:FluxPipeline": "FLUX",
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
|
| 269 |
+
|
| 270 |
+
def extract_parameters(input_string):
|
| 271 |
+
parameters = {}
|
| 272 |
+
input_string = input_string.replace("\n", "")
|
| 273 |
+
|
| 274 |
+
if "Negative prompt:" not in input_string:
|
| 275 |
+
if "Steps:" in input_string:
|
| 276 |
+
input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
|
| 277 |
+
else:
|
| 278 |
+
print("Invalid metadata")
|
| 279 |
+
parameters["prompt"] = input_string
|
| 280 |
+
return parameters
|
| 281 |
+
|
| 282 |
+
parm = input_string.split("Negative prompt:")
|
| 283 |
+
parameters["prompt"] = parm[0].strip()
|
| 284 |
+
if "Steps:" not in parm[1]:
|
| 285 |
+
print("Steps not detected")
|
| 286 |
+
parameters["neg_prompt"] = parm[1].strip()
|
| 287 |
+
return parameters
|
| 288 |
+
parm = parm[1].split("Steps:")
|
| 289 |
+
parameters["neg_prompt"] = parm[0].strip()
|
| 290 |
+
input_string = "Steps:" + parm[1]
|
| 291 |
+
|
| 292 |
+
# Extracting Steps
|
| 293 |
+
steps_match = re.search(r'Steps: (\d+)', input_string)
|
| 294 |
+
if steps_match:
|
| 295 |
+
parameters['Steps'] = int(steps_match.group(1))
|
| 296 |
+
|
| 297 |
+
# Extracting Size
|
| 298 |
+
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
| 299 |
+
if size_match:
|
| 300 |
+
parameters['Size'] = size_match.group(1)
|
| 301 |
+
width, height = map(int, parameters['Size'].split('x'))
|
| 302 |
+
parameters['width'] = width
|
| 303 |
+
parameters['height'] = height
|
| 304 |
+
|
| 305 |
+
# Extracting other parameters
|
| 306 |
+
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
|
| 307 |
+
for param in other_parameters:
|
| 308 |
+
parameters[param[0]] = param[1].strip('"')
|
| 309 |
+
|
| 310 |
+
return parameters
|
| 311 |
+
|
| 312 |
+
def get_model_type(repo_id: str):
|
| 313 |
+
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
| 314 |
+
default = "SD 1.5"
|
| 315 |
+
try:
|
| 316 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
| 317 |
+
tags = model.tags
|
| 318 |
+
for tag in tags:
|
| 319 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
| 320 |
+
except Exception:
|
| 321 |
+
return default
|
| 322 |
+
return default
|
| 323 |
+
|
| 324 |
## BEGIN MOD
|
| 325 |
class GuiSD:
|
| 326 |
+
def __init__(self):
|
| 327 |
self.model = None
|
| 328 |
+
|
| 329 |
+
print("Loading model...")
|
| 330 |
+
self.model = Model_Diffusers(
|
| 331 |
+
base_model_id="Lykon/dreamshaper-8",
|
| 332 |
+
task_name="txt2img",
|
| 333 |
+
vae_model=None,
|
| 334 |
+
type_model_precision=torch.float16,
|
| 335 |
+
retain_task_model_in_cache=False,
|
| 336 |
+
device="cpu",
|
| 337 |
+
)
|
| 338 |
+
self.model.load_beta_styles()
|
| 339 |
+
#self.model.device = torch.device("cpu") #
|
| 340 |
|
| 341 |
def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
|
| 342 |
#progress(0, desc="Start inference...")
|
|
|
|
| 350 |
return img
|
| 351 |
|
| 352 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
#yield f"Loading model: {model_name}"
|
| 355 |
+
|
| 356 |
+
vae_model = vae_model if vae_model != "None" else None
|
| 357 |
+
model_type = get_model_type(model_name)
|
| 358 |
|
| 359 |
if vae_model:
|
| 360 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
| 361 |
if model_type != vae_type:
|
| 362 |
+
gr.Warning(msg_inc_vae)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
+
self.model.device = torch.device("cpu")
|
| 365 |
+
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
| 366 |
+
|
| 367 |
+
self.model.load_pipe(
|
| 368 |
+
model_name,
|
| 369 |
+
task_name=TASK_STABLEPY[task],
|
| 370 |
+
vae_model=vae_model if vae_model != "None" else None,
|
| 371 |
+
type_model_precision=dtype_model,
|
| 372 |
+
retain_task_model_in_cache=False,
|
| 373 |
+
)
|
| 374 |
#yield f"Model loaded: {model_name}"
|
| 375 |
|
| 376 |
#@spaces.GPU
|
| 377 |
+
@torch.inference_mode()
|
| 378 |
def generate_pipeline(
|
| 379 |
self,
|
| 380 |
prompt,
|
|
|
|
| 479 |
mode_ip2,
|
| 480 |
scale_ip2,
|
| 481 |
pag_scale,
|
| 482 |
+
#progress=gr.Progress(track_tqdm=True),
|
| 483 |
):
|
| 484 |
+
#progress(0, desc="Preparing inference...")
|
| 485 |
+
|
|
|
|
| 486 |
vae_model = vae_model if vae_model != "None" else None
|
| 487 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
| 488 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 489 |
msg_lora = ""
|
| 490 |
|
| 491 |
+
print("Config model:", model_name, vae_model, loras_list)
|
| 492 |
+
|
| 493 |
## BEGIN MOD
|
|
|
|
| 494 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
| 495 |
global lora_model_list
|
| 496 |
lora_model_list = get_lora_model_list()
|
| 497 |
## END MOD
|
| 498 |
|
|
|
|
|
|
|
| 499 |
task = TASK_STABLEPY[task]
|
| 500 |
|
| 501 |
params_ip_img = []
|
|
|
|
| 518 |
params_ip_mode.append(modeip)
|
| 519 |
params_ip_scale.append(scaleip)
|
| 520 |
|
|
|
|
|
|
|
|
|
|
| 521 |
if task != "txt2img" and not image_control:
|
| 522 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
| 523 |
|
|
|
|
| 589 |
"high_threshold": high_threshold,
|
| 590 |
"value_threshold": value_threshold,
|
| 591 |
"distance_threshold": distance_threshold,
|
| 592 |
+
"lora_A": lora1 if lora1 != "None" and lora1 != "" else None,
|
| 593 |
"lora_scale_A": lora_scale1,
|
| 594 |
+
"lora_B": lora2 if lora2 != "None" and lora2 != "" else None,
|
| 595 |
"lora_scale_B": lora_scale2,
|
| 596 |
+
"lora_C": lora3 if lora3 != "None" and lora3 != "" else None,
|
| 597 |
"lora_scale_C": lora_scale3,
|
| 598 |
+
"lora_D": lora4 if lora4 != "None" and lora4 != "" else None,
|
| 599 |
"lora_scale_D": lora_scale4,
|
| 600 |
+
"lora_E": lora5 if lora5 != "None" and lora5 != "" else None,
|
| 601 |
"lora_scale_E": lora_scale5,
|
| 602 |
## BEGIN MOD
|
| 603 |
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
|
|
|
|
| 647 |
}
|
| 648 |
|
| 649 |
self.model.device = torch.device("cuda:0")
|
| 650 |
+
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5 and loras_list != [""] * 5:
|
| 651 |
self.model.pipe.transformer.to(self.model.device)
|
| 652 |
print("transformer to cuda")
|
| 653 |
|
| 654 |
+
#progress(1, desc="Inference preparation completed. Starting inference...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 655 |
|
| 656 |
+
info_state = "" # for yield version
|
| 657 |
+
return self.infer_short(self.model, pipe_params), info_state
|
| 658 |
## END MOD
|
| 659 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 660 |
def dynamic_gpu_duration(func, duration, *args):
|
| 661 |
|
|
|
|
| 662 |
@spaces.GPU(duration=duration)
|
| 663 |
def wrapped_func():
|
| 664 |
return func(*args)
|
|
|
|
| 678 |
load_lora_cpu = args[-3]
|
| 679 |
generation_args = args[:-3]
|
| 680 |
lora_list = [
|
| 681 |
+
None if item == "None" or item == "" else item
|
| 682 |
for item in [args[7], args[9], args[11], args[13], args[15]]
|
| 683 |
]
|
| 684 |
lora_status = [None] * 5
|
|
|
|
| 688 |
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
| 689 |
|
| 690 |
#if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
|
| 691 |
+
# yield None, msg_load_lora
|
| 692 |
|
| 693 |
# Load lora in CPU
|
| 694 |
if load_lora_cpu:
|
|
|
|
| 714 |
)
|
| 715 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
| 716 |
|
| 717 |
+
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time"
|
|
|
|
| 718 |
gr.Info(msg_request)
|
| 719 |
print(msg_request)
|
| 720 |
+
|
| 721 |
+
# yield from sd_gen.generate_pipeline(*generation_args)
|
| 722 |
|
| 723 |
start_time = time.time()
|
| 724 |
|
|
|
|
|
|
|
| 725 |
return dynamic_gpu_duration(
|
| 726 |
sd_gen.generate_pipeline,
|
| 727 |
gpu_duration_arg,
|
|
|
|
| 729 |
)
|
| 730 |
|
| 731 |
end_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
|
| 733 |
if verbose_arg:
|
| 734 |
+
execution_time = end_time - start_time
|
| 735 |
+
msg_task_complete = (
|
| 736 |
+
f"GPU task complete in: {round(execution_time, 0) + 1} seconds"
|
| 737 |
+
)
|
| 738 |
gr.Info(msg_task_complete)
|
| 739 |
print(msg_task_complete)
|
| 740 |
|
| 741 |
+
def extract_exif_data(image):
|
| 742 |
+
if image is None: return ""
|
| 743 |
+
|
| 744 |
+
try:
|
| 745 |
+
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
| 746 |
+
|
| 747 |
+
for key in metadata_keys:
|
| 748 |
+
if key in image.info:
|
| 749 |
+
return image.info[key]
|
| 750 |
|
| 751 |
+
return str(image.info)
|
| 752 |
|
| 753 |
+
except Exception as e:
|
| 754 |
+
return f"Error extracting metadata: {str(e)}"
|
| 755 |
+
|
| 756 |
+
@spaces.GPU(duration=20)
|
| 757 |
def esrgan_upscale(image, upscaler_name, upscaler_size):
|
| 758 |
if image is None: return None
|
| 759 |
|
|
|
|
| 775 |
|
| 776 |
return image_path
|
| 777 |
|
|
|
|
| 778 |
dynamic_gpu_duration.zerogpu = True
|
| 779 |
sd_gen_generate_pipeline.zerogpu = True
|
|
|
|
|
|
|
| 780 |
|
| 781 |
from pathlib import Path
|
| 782 |
from PIL import Image
|
| 783 |
import random, json
|
| 784 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
| 785 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
| 786 |
+
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD,
|
| 787 |
+
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en)
|
|
|
|
| 788 |
|
| 789 |
+
sd_gen = GuiSD()
|
| 790 |
#@spaces.GPU
|
| 791 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
| 792 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
|
|
|
| 801 |
gpu_duration = 59
|
| 802 |
|
| 803 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
| 804 |
+
info: str = ""
|
| 805 |
progress(0, desc="Preparing...")
|
| 806 |
|
| 807 |
if randomize_seed:
|
|
|
|
| 828 |
sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0])
|
| 829 |
progress(1, desc="Model loaded.")
|
| 830 |
progress(0, desc="Starting Inference...")
|
| 831 |
+
images, info = sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
|
| 832 |
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
| 833 |
lora4, lora4_wt, lora5, lora5_wt, sampler,
|
| 834 |
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
|
|
|
| 1008 |
def download_lora(dl_urls: str):
|
| 1009 |
global loras_url_to_path_dict
|
| 1010 |
dl_path = ""
|
| 1011 |
+
before = get_local_model_list(directory_loras)
|
| 1012 |
urls = []
|
| 1013 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
| 1014 |
+
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
| 1015 |
if not Path(local_path).exists():
|
| 1016 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
| 1017 |
urls.append(url)
|
| 1018 |
+
after = get_local_model_list(directory_loras)
|
| 1019 |
new_files = list_sub(after, before)
|
| 1020 |
i = 0
|
| 1021 |
for file in new_files:
|