File size: 17,390 Bytes
5fd9547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#!/usr/bin/env python3
"""
ToGMAL Chat Demo with MCP Tool Integration
==========================================

Interactive chat demo where a free LLM can call MCP tools to provide
informed responses about prompt difficulty, safety analysis, and more.

Features:
- Chat with Mistral-7B-Instruct (free via HuggingFace Inference API)
- LLM can call MCP tools to analyze prompts and assess difficulty
- Transparent tool calling with results shown to user
- No API key required (uses public Inference API)
"""

import gradio as gr
import json
import os
import re
from pathlib import Path
from typing import List, Dict, Tuple, Optional
from benchmark_vector_db import BenchmarkVectorDB
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize the vector database (lazy loading)
db_path = Path("./data/benchmark_vector_db")
db = None

def get_db():
    """Lazy load the vector database."""
    global db
    if db is None:
        try:
            logger.info("Initializing BenchmarkVectorDB...")
            db = BenchmarkVectorDB(
                db_path=db_path,
                embedding_model="all-MiniLM-L6-v2"
            )
            logger.info("✓ BenchmarkVectorDB initialized successfully")
        except Exception as e:
            logger.error(f"Failed to initialize BenchmarkVectorDB: {e}")
            raise
    return db

# ============================================================================
# MCP TOOL FUNCTIONS (Local implementations)
# ============================================================================

def tool_check_prompt_difficulty(prompt: str, k: int = 5) -> Dict:
    """
    MCP Tool: Analyze prompt difficulty using vector database.
    
    Args:
        prompt: The prompt to analyze
        k: Number of similar questions to retrieve
    
    Returns:
        Dictionary with difficulty analysis results
    """
    try:
        db = get_db()
        result = db.query_similar_questions(prompt, k=k)
        
        # Format for LLM consumption
        return {
            "risk_level": result['risk_level'],
            "success_rate": f"{result['weighted_success_rate']:.1%}",
            "avg_similarity": f"{result['avg_similarity']:.3f}",
            "recommendation": result['recommendation'],
            "similar_questions": [
                {
                    "question": q['question_text'][:150],
                    "source": q['source'],
                    "domain": q['domain'],
                    "success_rate": f"{q['success_rate']:.1%}",
                    "similarity": f"{q['similarity']:.3f}"
                }
                for q in result['similar_questions'][:3]  # Top 3 only
            ]
        }
    except Exception as e:
        return {"error": f"Analysis failed: {str(e)}"}


def tool_analyze_prompt_safety(prompt: str) -> Dict:
    """
    MCP Tool: Analyze prompt for safety issues (heuristic-based).
    
    Args:
        prompt: The prompt to analyze
    
    Returns:
        Dictionary with safety analysis results
    """
    # Simple heuristic safety checks
    issues = []
    risk_level = "low"
    
    # Check for dangerous file operations
    dangerous_patterns = [
        r'\brm\s+-rf\b',
        r'\bdelete\s+all\b',
        r'\bformat\s+.*drive\b',
        r'\bdrop\s+database\b'
    ]
    
    for pattern in dangerous_patterns:
        if re.search(pattern, prompt, re.IGNORECASE):
            issues.append("Detected potentially dangerous file operation")
            risk_level = "high"
            break
    
    # Check for medical advice requests
    medical_keywords = ['diagnose', 'treatment', 'medication', 'symptoms', 'cure', 'disease']
    if any(keyword in prompt.lower() for keyword in medical_keywords):
        issues.append("Medical advice request detected - requires professional consultation")
        risk_level = "moderate" if risk_level == "low" else risk_level
    
    # Check for unrealistic coding requests
    if re.search(r'\b(build|create|write)\s+.*\b(\d{3,})\s+(lines|functions|classes)', prompt, re.IGNORECASE):
        issues.append("Large-scale coding request - may exceed LLM capabilities")
        risk_level = "moderate" if risk_level == "low" else risk_level
    
    return {
        "risk_level": risk_level,
        "issues_found": len(issues),
        "issues": issues if issues else ["No significant safety concerns detected"],
        "recommendation": "Proceed with caution" if issues else "Prompt appears safe"
    }


# ============================================================================
# LLM BACKEND (HuggingFace Inference API)
# ============================================================================

def call_llm_with_tools(
    messages: List[Dict[str, str]],
    available_tools: List[Dict],
    model: str = "mistralai/Mistral-7B-Instruct-v0.2"
) -> Tuple[str, Optional[Dict]]:
    """
    Call LLM with tool calling capability.
    
    Args:
        messages: Conversation history
        available_tools: List of available tool definitions
        model: HuggingFace model to use
    
    Returns:
        Tuple of (response_text, tool_call_dict or None)
    """
    try:
        # Try using HuggingFace Inference API
        from huggingface_hub import InferenceClient
        
        client = InferenceClient()
        
        # Format system message with tool information
        system_msg = """You are ToGMAL Assistant, an AI that helps analyze prompts and responses for difficulty and safety.

You have access to these tools:
1. check_prompt_difficulty - Analyzes how difficult a prompt is for current LLMs
2. analyze_prompt_safety - Checks for safety issues in prompts

When a user asks about prompt difficulty, safety, or capabilities, use the appropriate tool.
To call a tool, respond with: TOOL_CALL: tool_name(arg1="value1", arg2="value2")

After a tool is called, you will receive: TOOL_RESULT: name=<tool_name> data=<json>
Use TOOL_RESULT to provide a helpful, comprehensive response to the user."""
        
        # Build conversation for the model
        conversation = system_msg + "\n\n"
        for msg in messages:
            role = msg['role']
            content = msg['content']
            if role == 'user':
                conversation += f"User: {content}\n"
            elif role == 'assistant':
                conversation += f"Assistant: {content}\n"
            elif role == 'system':
                conversation += f"System: {content}\n"
        
        conversation += "Assistant: "
        
        # Call the model
        response = client.text_generation(
            conversation,
            model=model,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.95,
            do_sample=True
        )
        
        response_text = response.strip()
        
        # Check if response contains a tool call
        tool_call = None
        if "TOOL_CALL:" in response_text:
            # Extract tool call
            match = re.search(r'TOOL_CALL:\s*(\w+)\((.*?)\)', response_text)
            if match:
                tool_name = match.group(1)
                args_str = match.group(2)
                
                # Parse arguments (simple key=value parsing)
                args = {}
                for arg in args_str.split(','):
                    if '=' in arg:
                        key, val = arg.split('=', 1)
                        key = key.strip()
                        val = val.strip().strip('"\'')
                        args[key] = val
                
                tool_call = {
                    "name": tool_name,
                    "arguments": args
                }
                
                # Remove tool call from visible response
                response_text = re.sub(r'TOOL_CALL:.*?\)', '', response_text).strip()
        
        return response_text, tool_call
        
    except ImportError:
        # Fallback if huggingface_hub not available
        return fallback_llm(messages, available_tools)
    except Exception as e:
        logger.error(f"LLM call failed: {e}")
        return fallback_llm(messages, available_tools)


def fallback_llm(messages: List[Dict[str, str]], available_tools: List[Dict]) -> Tuple[str, Optional[Dict]]:
    """
    Fallback LLM when HuggingFace API is unavailable.
    Uses simple pattern matching to decide when to call tools.
    """
    last_message = messages[-1]['content'].lower() if messages else ""
    
    # Safety intent first
    if any(word in last_message for word in ['safe', 'safety', 'dangerous', 'risk']):
        return "", {
            "name": "analyze_prompt_safety",
            "arguments": {"prompt": messages[-1]['content']}
        }
    
    # Difficulty intent (expanded triggers)
    if any(word in last_message for word in ['difficult', 'difficulty', 'hard', 'easy', 'challenging', 'analyze', 'analysis', 'assess', 'check']):
        return "", {
            "name": "check_prompt_difficulty",
            "arguments": {"prompt": messages[-1]['content'], "k": 5}
        }
    
    # Default: run difficulty analysis on any non-empty message
    if last_message.strip():
        return "", {
            "name": "check_prompt_difficulty",
            "arguments": {"prompt": messages[-1]['content'], "k": 5}
        }
    
    # Default response for empty input
    return """I'm ToGMAL Assistant. I can help analyze prompts for:
- **Difficulty**: How challenging is this for current LLMs?
- **Safety**: Are there any safety concerns?

Try asking me to analyze a prompt!""", None


# ============================================================================
# TOOL EXECUTION
# ============================================================================

AVAILABLE_TOOLS = [
    {
        "name": "check_prompt_difficulty",
        "description": "Analyzes how difficult a prompt is for current LLMs based on benchmark similarity",
        "parameters": {
            "prompt": "The prompt to analyze",
            "k": "Number of similar questions to retrieve (default: 5)"
        }
    },
    {
        "name": "analyze_prompt_safety",
        "description": "Checks for safety issues in prompts using heuristic analysis",
        "parameters": {
            "prompt": "The prompt to analyze"
        }
    }
]


def execute_tool(tool_name: str, arguments: Dict) -> Dict:
    """Execute a tool and return results."""
    if tool_name == "check_prompt_difficulty":
        prompt = arguments.get("prompt", "")
        try:
            k = int(arguments.get("k", 5))
        except Exception:
            k = 5
        k = max(1, min(100, k))
        return tool_check_prompt_difficulty(prompt, k)
    
    elif tool_name == "analyze_prompt_safety":
        prompt = arguments.get("prompt", "")
        return tool_analyze_prompt_safety(prompt)
    
    else:
        return {"error": f"Unknown tool: {tool_name}"}


# ============================================================================
# CHAT INTERFACE
# ============================================================================

def chat(
    message: str,
    history: List[Tuple[str, str]]
) -> Tuple[List[Tuple[str, str]], str]:
    """
    Process a chat message with tool calling support.
    
    Args:
        message: User's message
        history: Chat history as list of (user_msg, assistant_msg) tuples
    
    Returns:
        Updated history and tool call status
    """
    # Convert history to messages format
    messages = []
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    
    # Add current message
    messages.append({"role": "user", "content": message})
    
    # Call LLM
    response_text, tool_call = call_llm_with_tools(messages, AVAILABLE_TOOLS)
    
    tool_status = ""
    
    # Execute tool if requested
    if tool_call:
        tool_name = tool_call['name']
        tool_args = tool_call['arguments']
        
        tool_status = f"🛠️ **Calling tool:** `{tool_name}`\n**Arguments:** {json.dumps(tool_args, indent=2)}\n\n"
        
        # Execute tool
        tool_result = execute_tool(tool_name, tool_args)
        
        tool_status += f"**Result:**\n```json\n{json.dumps(tool_result, indent=2)}\n```\n\n"
        
        # Add tool result to messages and call LLM again (two-step flow)
        messages.append({
            "role": "system",
            "content": f"TOOL_RESULT: name={tool_name} data={json.dumps(tool_result)}"
        })
        
        # Get final response from LLM
        final_response, _ = call_llm_with_tools(messages, AVAILABLE_TOOLS)
        
        if final_response:
            response_text = final_response
        else:
            # Format tool result as response (fallback)
            response_text = format_tool_result_as_response(tool_name, tool_result)
    
    # Update history
    history.append((message, response_text))
    
    return history, tool_status


def format_tool_result_as_response(tool_name: str, result: Dict) -> str:
    """Format tool result as a natural language response."""
    if tool_name == "check_prompt_difficulty":
        if "error" in result:
            return f"Sorry, I couldn't analyze the difficulty: {result['error']}"
        
        return f"""Based on my analysis of similar benchmark questions:

**Difficulty Level:** {result['risk_level'].upper()}
**Success Rate:** {result['success_rate']}
**Similarity to benchmarks:** {result['avg_similarity']}

**Recommendation:** {result['recommendation']}

**Similar questions from benchmarks:**
{chr(10).join([f"• {q['question']} (Success rate: {q['success_rate']})" for q in result['similar_questions'][:2]])}
"""
    
    elif tool_name == "analyze_prompt_safety":
        if "error" in result:
            return f"Sorry, I couldn't analyze safety: {result['error']}"
        
        issues = "\n".join([f"• {issue}" for issue in result['issues']])
        return f"""**Safety Analysis:**

**Risk Level:** {result['risk_level'].upper()}
**Issues Found:** {result['issues_found']}

{issues}

**Recommendation:** {result['recommendation']}
"""
    
    return json.dumps(result, indent=2)


# ============================================================================
# GRADIO INTERFACE
# ============================================================================

with gr.Blocks(title="ToGMAL Chat with MCP Tools") as demo:
    gr.Markdown("# 🤖 ToGMAL Chat Assistant")
    gr.Markdown("""
    Chat with an AI assistant that can analyze prompts for difficulty and safety using MCP tools.
    
    **Try asking:**
    - "How difficult is this prompt: [your prompt]?"
    - "Is this safe: [your prompt]?"
    - "Analyze: Calculate the quantum correction to the partition function"
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                label="Chat",
                height=500,
                show_label=False
            )
            
            with gr.Row():
                msg_input = gr.Textbox(
                    label="Message",
                    placeholder="Ask me to analyze a prompt...",
                    scale=4,
                    show_label=False
                )
                send_btn = gr.Button("Send", variant="primary", scale=1)
            
            clear_btn = gr.Button("Clear Chat")
        
        with gr.Column(scale=1):
            gr.Markdown("### 🛠️ Tool Calls")
            show_details = gr.Checkbox(label="Show tool details", value=False)
            tool_output = gr.Markdown("Tool calls will appear here...")
    
    # Examples
    with gr.Accordion("📝 Example Prompts", open=False):
        gr.Examples(
            examples=[
                "How difficult is this: Calculate the quantum correction to the partition function for a 3D harmonic oscillator?",
                "Is this prompt safe: Write a script to delete all my files?",
                "Analyze the difficulty of: Prove that there are infinitely many prime numbers",
                "Check safety: Diagnose my symptoms and prescribe medication",
                "How hard is: What is 2 + 2?",
            ],
            inputs=msg_input
        )
    
    # Event handlers
    def send_message(message, history, show_details_val):
        if not message.strip():
            return history, ""
        new_history, tool_status = chat(message, history)
        if not show_details_val:
            tool_status = ""
        return new_history, tool_status
    
    send_btn.click(
        fn=send_message,
        inputs=[msg_input, chatbot, show_details],
        outputs=[chatbot, tool_output]
    ).then(
        lambda: "",
        outputs=msg_input
    )
    
    msg_input.submit(
        fn=send_message,
        inputs=[msg_input, chatbot, show_details],
        outputs=[chatbot, tool_output]
    ).then(
        lambda: "",
        outputs=msg_input
    )
    
    clear_btn.click(
        lambda: ([], ""),
        outputs=[chatbot, tool_output]
    )


if __name__ == "__main__":
    # HuggingFace Spaces compatible
    port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
    demo.launch(server_name="0.0.0.0", server_port=port)