|
|
import os |
|
|
import torch |
|
|
from fastapi import FastAPI |
|
|
from pydantic import BaseModel |
|
|
from fastapi import UploadFile, File |
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
from fastapi import UploadFile, File |
|
|
from inference import extract_text_from_pdf, split_text_by_language, predict_idiom, normalize_text, load_model, IdiomMatcher |
|
|
from nltk.tokenize import sent_tokenize |
|
|
from langdetect import detect |
|
|
from fastapi import HTTPException |
|
|
import re |
|
|
import fitz |
|
|
|
|
|
origins = [ |
|
|
"http://localhost:3000", |
|
|
"https://language-learning-base-website.vercel.app", |
|
|
"https://www.idiomator.com" |
|
|
"https://idiomator.com" |
|
|
|
|
|
] |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
app.add_middleware( |
|
|
CORSMiddleware, |
|
|
allow_origins= origins, |
|
|
allow_credentials=True, |
|
|
allow_methods=["*"], |
|
|
allow_headers=["*"], |
|
|
) |
|
|
|
|
|
|
|
|
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") |
|
|
checkpoint_path = os.path.join(os.path.dirname(__file__), "checkpoints") |
|
|
model, tokenizer = load_model(checkpoint_path) |
|
|
model = model.to(device) |
|
|
model.eval() |
|
|
|
|
|
class TextRequest(BaseModel): |
|
|
text: str |
|
|
language: str = "en" |
|
|
|
|
|
class IdiomResponse(BaseModel): |
|
|
idioms: list[str] |
|
|
language: str = "en" |
|
|
|
|
|
@app.get("/") |
|
|
def root(): |
|
|
return {"status": "ok"} |
|
|
|
|
|
|
|
|
@app.post("/extract_idioms_ai", response_model=IdiomResponse) |
|
|
def extract_idioms(request: TextRequest): |
|
|
import time |
|
|
start = time.time() |
|
|
print(f"[π₯] Request received at: {start}") |
|
|
|
|
|
text = normalize_text(request.text) |
|
|
language = request.language.lower() |
|
|
|
|
|
sentences = split_text_by_language(text, language=language) |
|
|
idioms = [] |
|
|
for sent in sentences: |
|
|
idioms.extend(predict_idiom(sent, model, tokenizer, device)) |
|
|
print(f"[β
] Done in {time.time() - start:.3f}s") |
|
|
return {"idioms": idioms} |
|
|
|
|
|
|
|
|
from fastapi import Form |
|
|
|
|
|
def check_pdf_page_limit(pdf_bytes, max_pages=10): |
|
|
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc: |
|
|
if len(doc) > max_pages: |
|
|
raise HTTPException(status_code=400, detail=f"PDF has {len(doc)} pages. Limit is {max_pages}.") |
|
|
|
|
|
@app.post("/extract_idioms_pdf_ai", response_model=IdiomResponse) |
|
|
async def extract_idioms_pdf( |
|
|
file: UploadFile = File(...), |
|
|
language: str = Form(...) |
|
|
): |
|
|
|
|
|
pdf_bytes = await file.read() |
|
|
check_pdf_page_limit(pdf_bytes, max_pages=10) |
|
|
text = extract_text_from_pdf(pdf_bytes) |
|
|
|
|
|
text = normalize_text(text) |
|
|
sentences = split_text_by_language(text, language=language) |
|
|
idioms = [] |
|
|
for sent in sentences: |
|
|
idioms.extend(predict_idiom(sent, model, tokenizer, device)) |
|
|
return {"idioms": idioms} |
|
|
|
|
|
|
|
|
idiom_matcher = IdiomMatcher({ |
|
|
"en": "idioms_structured_1/seed_idioms_en_cleaned.jsonl", |
|
|
"es": "idioms_structured_1/seed_idioms_es_cleaned.jsonl" |
|
|
}) |
|
|
|
|
|
@app.post("/extract_idioms_heuristic", response_model=IdiomResponse) |
|
|
def extract_idioms_heuristic(request: TextRequest): |
|
|
text = normalize_text(request.text) |
|
|
language = request.language.lower() |
|
|
idiom_matches = idiom_matcher.match(text, lang=language) |
|
|
idioms = [idiom["idiom"] for idiom in idiom_matches] |
|
|
|
|
|
return {"idioms": idioms} |
|
|
@app.post("/extract_idioms_pdf_heuristic", response_model=IdiomResponse) |
|
|
async def extract_idioms_pdf_( |
|
|
file: UploadFile = File(...), |
|
|
language: str = Form(...) |
|
|
): |
|
|
pdf_bytes = await file.read() |
|
|
check_pdf_page_limit(pdf_bytes, max_pages=10) |
|
|
text = extract_text_from_pdf(pdf_bytes) |
|
|
|
|
|
text = normalize_text(text) |
|
|
sentences = split_text_by_language(text, language=language) |
|
|
idioms = [] |
|
|
idiom_matches = idiom_matcher.match(text, lang=language) |
|
|
idioms = [idiom["idiom"] for idiom in idiom_matches] |
|
|
return {"idioms": idioms} |
|
|
|