Spaces:
Runtime error
Runtime error
Commit
·
2c140eb
1
Parent(s):
4c61a0f
add app.py and readme
Browse files
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title: ImageBind
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: ImageBind
|
| 3 |
+
emoji: 🔥
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.12.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import data
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from models import imagebind_model
|
| 5 |
+
from models.imagebind_model import ModalityType
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
model = imagebind_model.imagebind_huge(pretrained=True)
|
| 10 |
+
model.eval()
|
| 11 |
+
model.to(device)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def image_text_zeroshot(image, text_list):
|
| 15 |
+
image_paths = [image]
|
| 16 |
+
labels = [label.strip(" ") for label in text_list.strip(" ").split(",")]
|
| 17 |
+
inputs = {
|
| 18 |
+
ModalityType.TEXT: data.load_and_transform_text(text_list, device),
|
| 19 |
+
ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
embeddings = model(inputs)
|
| 24 |
+
|
| 25 |
+
scores = torch.softmax(
|
| 26 |
+
embeddings[ModalityType.VISION] @ embeddings[ModalityType.AUDIO].T,
|
| 27 |
+
dim=-1
|
| 28 |
+
).squeeze(0).tolist()
|
| 29 |
+
|
| 30 |
+
score_dict = {label:score for label, score in zip(labels, scores)}
|
| 31 |
+
|
| 32 |
+
return score_dict
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
inputs = [
|
| 36 |
+
gr.inputs.Image(type='file',
|
| 37 |
+
label="Input image"),
|
| 38 |
+
gr.inputs.Textbox(lines=1,
|
| 39 |
+
label="Candidate texts"),
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
iface = gr.Interface(image_text_zeroshot,
|
| 43 |
+
inputs,
|
| 44 |
+
"label",
|
| 45 |
+
examples=[[".assets/dog_image.jpg", "A dog|A car|A bird"],
|
| 46 |
+
[".assets/car_image.jpg", "A dog|A car|A bird"],
|
| 47 |
+
[".assets/bird_image.jpg", "A dog|A car|A bird"]],
|
| 48 |
+
description="""Zeroshot test""",
|
| 49 |
+
title="Zero-shot Classification")
|
| 50 |
+
|
| 51 |
+
iface.launch()
|