Spaces:
Running
Running
| # coding=utf-8 | |
| # Copyright 2024 Tencent Inc. and the LlamaFactory team. | |
| # | |
| # This code is inspired by the Tencent's LLaMA-Pro library. | |
| # https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| from collections import OrderedDict | |
| from typing import TYPE_CHECKING, Optional | |
| import fire | |
| import torch | |
| from safetensors.torch import save_file | |
| from tqdm import tqdm | |
| from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
| from transformers.modeling_utils import ( | |
| SAFE_WEIGHTS_INDEX_NAME, | |
| SAFE_WEIGHTS_NAME, | |
| WEIGHTS_INDEX_NAME, | |
| WEIGHTS_NAME, | |
| shard_checkpoint, | |
| ) | |
| if TYPE_CHECKING: | |
| from transformers import PretrainedConfig, PreTrainedModel | |
| def change_name(name: str, old_index: int, new_index: int) -> str: | |
| return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index)) | |
| def block_expansion( | |
| model_name_or_path: str, | |
| output_dir: str, | |
| num_expand: int, | |
| shard_size: Optional[str] = "2GB", | |
| save_safetensors: Optional[bool] = False, | |
| ): | |
| r""" | |
| Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models. | |
| Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8 | |
| """ | |
| config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) | |
| num_layers = getattr(config, "num_hidden_layers") | |
| setattr(config, "num_hidden_layers", num_layers + num_expand) | |
| config.save_pretrained(output_dir) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) | |
| tokenizer.save_pretrained(output_dir) | |
| config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) # load the original one | |
| if save_safetensors: | |
| setattr(config, "tie_word_embeddings", False) # safetensors does not allow shared weights | |
| model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained( | |
| model_name_or_path, | |
| config=config, | |
| torch_dtype="auto", | |
| trust_remote_code=True, | |
| low_cpu_mem_usage=True, | |
| ) | |
| state_dict = model.state_dict() | |
| if num_layers % num_expand != 0: | |
| raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand)) | |
| split = num_layers // num_expand | |
| layer_cnt = 0 | |
| output_state_dict = OrderedDict() | |
| for i in range(num_layers): | |
| for key, value in state_dict.items(): | |
| if ".{:d}.".format(i) in key: | |
| output_state_dict[change_name(key, i, layer_cnt)] = value | |
| print("Add layer {} copied from layer {}".format(layer_cnt, i)) | |
| layer_cnt += 1 | |
| if (i + 1) % split == 0: | |
| for key, value in state_dict.items(): | |
| if ".{:d}.".format(i) in key: | |
| if "down_proj" in key or "o_proj" in key: | |
| output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value) | |
| else: | |
| output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value) | |
| print("Add layer {} expanded from layer {}".format(layer_cnt, i)) | |
| layer_cnt += 1 | |
| for key, value in state_dict.items(): | |
| if key not in output_state_dict: | |
| output_state_dict[key] = value | |
| weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME | |
| shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name) | |
| for shard_file, shard in tqdm(shards.items(), desc="Save weights"): | |
| if save_safetensors: | |
| save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) | |
| else: | |
| torch.save(shard, os.path.join(output_dir, shard_file)) | |
| if index is None: | |
| print("Model weights saved in {}".format(os.path.join(output_dir, weights_name))) | |
| else: | |
| index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME | |
| with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: | |
| json.dump(index, f, indent=2, sort_keys=True) | |
| print("Model weights saved in {}".format(output_dir)) | |
| print("- Fine-tune this model with:") | |
| print("model_name_or_path: {}".format(output_dir)) | |
| print("finetuning_type: freeze") | |
| print("freeze_trainable_layers: {}".format(num_expand)) | |
| print("use_llama_pro: true") | |
| if __name__ == "__main__": | |
| fire.Fire(block_expansion) | |