DSIP / preprocess.py
KaiquanMah's picture
Create preprocess.py
a5908eb verified
raw
history blame
1.72 kB
import argparse
import pandas as pd
from sklearn.model_selection import train_test_split
import os
def parse(csv_path):
print(f"Location of the file: {csv_path}")
# Step 1: Load the dataset
# file_path = "dataset.csv" # Path to the original dataset
data = pd.read_csv(csv_path)
# Drop dupes
data = data.drop_duplicates()
# Step 2: Define the feature columns (X) and target column (y)
X = data[["name", "attendance percentage", "average sleep time", "average screen time"]] # Feature columns
y = data["grade"] # Target column
# Step 3: Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 4: Combine X and y back into dataframes for train and test
train_data = pd.concat([X_train, y_train], axis=1) # Combine features and target for training data
test_data = pd.concat([X_test, y_test], axis=1) # Combine features and target for testing data
# Step 5: Create the 'data' folder if it doesn't exist
output_folder = "data"
os.makedirs(output_folder, exist_ok=True)
# Step 6: Save the train and test sets as CSV files
train_file_path = os.path.join(output_folder, "train.csv")
test_file_path = os.path.join(output_folder, "test.csv")
train_data.to_csv(train_file_path, index=False)
test_data.to_csv(test_file_path, index=False)
print(f"Train and test datasets saved in '{output_folder}' folder.")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--csv-path", type=str)
args = parser.parse_args()
parse(args.csv_path)