Spaces:
Configuration error
Configuration error
| import argparse | |
| import pandas as pd | |
| from sklearn.model_selection import train_test_split | |
| import os | |
| def parse(csv_path): | |
| print(f"Location of the file: {csv_path}") | |
| # Step 1: Load the dataset | |
| # file_path = "dataset.csv" # Path to the original dataset | |
| data = pd.read_csv(csv_path) | |
| # Drop dupes | |
| data = data.drop_duplicates() | |
| # Step 2: Define the feature columns (X) and target column (y) | |
| X = data[["name", "attendance percentage", "average sleep time", "average screen time"]] # Feature columns | |
| y = data["grade"] # Target column | |
| # Step 3: Split the dataset into training and testing sets | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
| # Step 4: Combine X and y back into dataframes for train and test | |
| train_data = pd.concat([X_train, y_train], axis=1) # Combine features and target for training data | |
| test_data = pd.concat([X_test, y_test], axis=1) # Combine features and target for testing data | |
| # Step 5: Create the 'data' folder if it doesn't exist | |
| output_folder = "data" | |
| os.makedirs(output_folder, exist_ok=True) | |
| # Step 6: Save the train and test sets as CSV files | |
| train_file_path = os.path.join(output_folder, "train.csv") | |
| test_file_path = os.path.join(output_folder, "test.csv") | |
| train_data.to_csv(train_file_path, index=False) | |
| test_data.to_csv(test_file_path, index=False) | |
| print(f"Train and test datasets saved in '{output_folder}' folder.") | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--csv-path", type=str) | |
| args = parser.parse_args() | |
| parse(args.csv_path) | |