import argparse import pandas as pd import joblib def run_prediction(): input_path = "data/X_test_1st.csv" output_path = "results/predictions.csv" model_path = "model/best_model.pkl" # Load data and model df = pd.read_csv(input_path) model = joblib.load(model_path) # Preprocessing features = [ 'product_category_1', 'product_category_2', 'user_depth', 'age_level', 'city_development_index', 'var_1', 'gender' ] X = df[features] X = pd.get_dummies(X, columns=['gender'], drop_first=True) # Predict predictions = model.predict(X) # Save predictions df['predictions'] = predictions df.to_csv(output_path, index=False) print(f"Predictions saved to {output_path}") # def main(): # parser = argparse.ArgumentParser() # parser.add_argument('--model-path', type=str, required=True, help='Path to the trained model') # parser.add_argument('--input-data', type=str, required=True, help='Path to input data for prediction') # args = parser.parse_args() # print(f"Loading model from {args.model_path}") # print(f"Predicting on data from {args.input_data}") # # Add prediction logic here # if __name__ == '__main__': # main()