KaiquanMah's picture
Retriever - LangGraph version
18fc979 verified
raw
history blame
1.55 kB
# retriever tool
from langchain.tools import Tool
from langchain_community.retrievers import BM25Retriever
# load dataset
import datasets
from langchain.docstore.document import Document
###########################
# Retriever - changed to LangGraph version
###########################
bm25_retriever = BM25Retriever.from_documents(docs)
def extract_text(query: str) -> str:
"""Retrieves detailed information about gala guests based on their name or relation."""
results = bm25_retriever.invoke(query)
if results:
return "\n\n".join([doc.page_content for doc in results[:3]])
else:
return "No matching guest information found."
guest_info_tool = Tool(
name="guest_info_retriever",
func=extract_text,
description="Retrieves detailed information about gala guests based on their name or relation."
)
###########################
# no change from smolagents to LangGraph
def load_guest_dataset():
# Load the dataset
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
# Convert dataset entries into Document objects
docs = [
Document(
page_content="\n".join([
f"Name: {guest['name']}",
f"Relation: {guest['relation']}",
f"Description: {guest['description']}",
f"Email: {guest['email']}"
]),
metadata={"name": guest["name"]}
)
for guest in guest_dataset
]
# Return the tool
return GuestInfoRetrieverTool(docs)