from typing import TypedDict, Annotated from langgraph.graph.message import add_messages from langchain_core.messages import AnyMessage, HumanMessage, AIMessage from langgraph.prebuilt import ToolNode from langgraph.graph import START, StateGraph from langgraph.prebuilt import tools_condition from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace # added import os from retriever import guest_info_tool # Initialize the Hugging Face model # added token HF_TOKEN = os.environ['HF_TOKEN'] llm = HuggingFaceEndpoint( repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", huggingfacehub_api_token=HF_TOKEN, ) chat = ChatHuggingFace(llm=llm, verbose=True) tools = [guest_info_tool] chat_with_tools = chat.bind_tools(tools) # Generate the AgentState and Agent graph class AgentState(TypedDict): messages: Annotated[list[AnyMessage], add_messages] def assistant(state: AgentState): return { "messages": [chat_with_tools.invoke(state["messages"])], } ## The graph builder = StateGraph(AgentState) # Define nodes: these do the work builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Define edges: these determine how the control flow moves builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", # If the latest message requires a tool, route to tools # Otherwise, provide a direct response tools_condition, ) builder.add_edge("tools", "assistant") alfred = builder.compile() messages = [HumanMessage(content="Tell me about our guest named 'Lady Ada Lovelace'.")] response = alfred.invoke({"messages": messages}) print("🎩 Alfred's Response:") print(response['messages'][-1].content) if __name__ == "__main__": GradioUI(alfred).launch()