is_click / data_loader.py
KaiquanMah's picture
fixed by yair
2ea05a3 verified
raw
history blame
8.36 kB
import pandas as pd
import numpy as np
import time
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from imblearn.over_sampling import SMOTE
# ===========================
# CONFIGURATION
# ===========================
TRAIN_PATH = "data/train_dataset_full - train_dataset_full.csv"
# TRAIN_PATH = "data/train_dataset_full - train_dataset_partial_for_testing.csv"
TEST_PATH = "data/X_test_1st.csv" # Replace with actual test dataset path
CATEGORICAL_COLUMNS = ["gender", "product",]
IDS_COLUMNS = [ "user_id", "session_id", "campaign_id", "webpage_id"]
TARGET_COLUMN = "is_click"
FEATURE_COLUMNS = [
"age_level", "gender", "product",
"product_category_1", "product_category_2", "user_group_id",
"user_depth", "city_development_index", "var_1"
]
AGGREGATED_COLUMNS = [
"click_sum_age_sex_prod", "click_count_age_sex_prod",
"unique_campaigns_age_sex_prod", "unique_webpages_age_sex_prod",
"click_sum_city_age_prod", "click_count_city_age_prod",
"unique_campaigns_city_age_prod", "unique_webpages_city_age_prod"
]
TEMPORAL_COLUMNS = ["year", "month", "day", "hour", "minute", "weekday"]
# ===========================
# LOAD DATASETS
# ===========================
def load_data(train_path=TRAIN_PATH, test_path=TEST_PATH):
"""Load train & test datasets, handling missing values."""
train_df = pd.read_csv(train_path)
y_train = train_df[TARGET_COLUMN]
train_df = train_df[~y_train.isnull()]
test_df = pd.read_csv(test_path)
train_df["DateTime"] = pd.to_datetime(train_df["DateTime"])
test_df["DateTime"] = pd.to_datetime(test_df["DateTime"])
train_df["DateTime"].fillna(train_df["DateTime"].mode()[0], inplace=True)
test_df["DateTime"].fillna(test_df["DateTime"].mode()[0], inplace=True)
if "DateTime" in train_df.columns:
train_df["DateTime"] = pd.to_datetime(train_df["DateTime"])
train_df["year"] = train_df["DateTime"].dt.year
train_df["month"] = train_df["DateTime"].dt.month
train_df["day"] = train_df["DateTime"].dt.day
train_df["hour"] = train_df["DateTime"].dt.hour
train_df["minute"] = train_df["DateTime"].dt.minute
train_df["weekday"] = train_df["DateTime"].dt.weekday
train_df.drop("DateTime", axis=1, inplace=True)
if "DateTime" in test_df.columns:
test_df["DateTime"] = pd.to_datetime(test_df["DateTime"])
test_df["year"] = test_df["DateTime"].dt.year
test_df["month"] = test_df["DateTime"].dt.month
test_df["day"] = test_df["DateTime"].dt.day
test_df["hour"] = test_df["DateTime"].dt.hour
test_df["minute"] = test_df["DateTime"].dt.minute
test_df["weekday"] = test_df["DateTime"].dt.weekday
test_df.drop("DateTime", axis=1, inplace=True)
# Fill missing values
train_df.fillna(-1, inplace=True)
test_df.fillna(-1, inplace=True)
return train_df, test_df
# ===========================
# FEATURE ENGINEERING: AGGREGATIONS
# ===========================
def add_aggregated_features(df, test_df):
"""Creates aggregated features based on age, gender, and product interactions."""
# Aggregate by age & gender vs product
age_sex_product_agg = df.groupby(["age_level", "gender", "product"]).agg({
"is_click": ["sum", "count"],
"campaign_id": "nunique",
"webpage_id": "nunique"
}).reset_index()
# Rename columns after aggregation
age_sex_product_agg.columns = ["age_level", "gender", "product",
"click_sum_age_sex_prod", "click_count_age_sex_prod",
"unique_campaigns_age_sex_prod", "unique_webpages_age_sex_prod"]
# Merge into train & test datasets
df = df.merge(age_sex_product_agg, on=["age_level", "gender", "product"], how="left")
test_df = test_df.merge(age_sex_product_agg, on=["age_level", "gender", "product"], how="left")
# Aggregate by city, age, product
city_age_product_agg = df.groupby(["city_development_index", "age_level", "product"]).agg({
"is_click": ["sum", "count"],
"campaign_id": "nunique",
"webpage_id": "nunique"
}).reset_index()
# Rename columns
city_age_product_agg.columns = ["city_development_index", "age_level", "product",
"click_sum_city_age_prod", "click_count_city_age_prod",
"unique_campaigns_city_age_prod", "unique_webpages_city_age_prod"]
# Merge into train & test datasets
df = df.merge(city_age_product_agg, on=["city_development_index", "age_level", "product"], how="left")
test_df = test_df.merge(city_age_product_agg, on=["city_development_index", "age_level", "product"], how="left")
# Fill missing values after merging
df.fillna(0, inplace=True)
test_df.fillna(0, inplace=True)
return df, test_df
# ===========================
# ENCODE & NORMALIZE FEATURES
# ===========================
def preprocess_data(df, test_df, categorical_columns):
"""Encodes categorical features, normalizes numerical features, and prepares the dataset."""
label_encoders = {}
for col in categorical_columns:
le = LabelEncoder()
df[col] = le.fit_transform(df[col].astype(str))
test_df[col] = test_df[col].astype(str).map(lambda s: le.transform([s])[0] if s in le.classes_ else -1)
label_encoders[col] = le # Store encoders for later use
numerical_columns = [col for col in FEATURE_COLUMNS + AGGREGATED_COLUMNS if col not in categorical_columns]
# scaler = StandardScaler()
# df[numerical_columns] = scaler.fit_transform(df[numerical_columns])
# test_df[numerical_columns] = scaler.transform(test_df[numerical_columns])
return df, test_df, label_encoders,# scaler
# ===========================
# SPLIT DATA & HANDLE IMBALANCE
# ===========================
def split_and_balance_data(df, target_column):
"""Splits data into training and validation sets, applies SMOTE to balance classes."""
X = df[IDS_COLUMNS + FEATURE_COLUMNS + AGGREGATED_COLUMNS + TEMPORAL_COLUMNS]
y = df[target_column]
# Handle class imbalance using SMOTE
smote = SMOTE(sampling_strategy="auto", random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)
# Split into training & validation sets
X_train, X_val, y_train, y_val = train_test_split(
X_resampled, y_resampled, test_size=0.2, random_state=42, stratify=y_resampled
)
return X_train, X_val, y_train, y_val
# ===========================
# VISUALIZE FEATURES
# ===========================
def visualize_features():
"""Generates visualizations for aggregated features."""
df, _ = load_data()
df, _ = add_aggregated_features(df, df)
sns.set_style("whitegrid")
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
sns.barplot(x="age_level", y="click_sum_age_sex_prod", hue="gender",
data=df, ax=axes[0], palette="coolwarm")
axes[0].set_title("Total Clicks by Age & Gender vs Product")
sns.barplot(x="city_development_index", y="click_sum_city_age_prod", hue="age_level",
data=df, ax=axes[1], palette="viridis")
axes[1].set_title("Total Clicks by City Development Index & Age")
plt.tight_layout()
plt.show()
# ===========================
# RUN FULL DATA PROCESSING PIPELINE
# ===========================
def load_and_process_data():
"""Runs the full data processing pipeline and returns preprocessed training & test data."""
df, test_df = load_data()
df, test_df = add_aggregated_features(df, test_df)
df, test_df, label_encoders = preprocess_data(df, test_df, CATEGORICAL_COLUMNS)
X_train, X_val, y_train, y_val = split_and_balance_data(df, TARGET_COLUMN)
return X_train, X_val, y_train, y_val, test_df
if __name__ == "__main__":
print("🔹 Loading and processing data...")
X_train, X_val, y_train, y_val, test_df = load_and_process_data()
print("✅ Data successfully loaded and processed!")