Spaces:
Running
Running
File size: 8,791 Bytes
4fe8577 74a1e84 a9681af 4fe8577 74a1e84 1e6e534 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 0194a83 4fe8577 74a1e84 4fe8577 1e6e534 4fe8577 1e6e534 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 0194a83 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 448f148 4fe8577 a9681af 74a1e84 a9681af 74a1e84 a9681af 74a1e84 a9681af 4fe8577 74a1e84 4fe8577 74a1e84 4fe8577 a9681af 74a1e84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# create_granular_chunks.py
import os
import json
import re
from typing import List, Dict, Any
import nltk
# Download punkt tokenizer if not already done (Ensure this runs once in your environment setup)
nltk.download('punkt')
nltk.download('punkt_tab') # Also download punkt_tab to avoid LookupError
# --- Configuration ---
INPUT_FILE = "combined_context.jsonl"
OUTPUT_FILE = "granular_chunks_final.jsonl" # Keep filename consistent
# --- Global State ---
chunk_counter = 0
def get_unique_id() -> str:
"""Returns a unique, incrementing ID for each chunk."""
global chunk_counter
chunk_counter += 1
return f"chunk-{chunk_counter}"
def create_chunk(context: Dict, text: str) -> Dict:
"""Creates a standardized chunk dictionary with rich metadata."""
metadata = {
"section": context.get("section"),
"clause": context.get("clause") or context.get("Clause"),
"title": context.get("title"),
"source_description": context.get("description"),
}
# Add other primitive metadata keys
for key, value in context.items():
if key not in metadata and isinstance(value, (str, int, float, bool)):
metadata[key] = value
return {
"id": get_unique_id(),
"text": text.strip(),
"metadata": {k: v for k, v in metadata.items() if v is not None}
}
def format_delegation_text(delegation: Any) -> str:
"""
Formats a delegation dictionary or string into a readable string.
Explicitly includes "NIL" or "---" to capture no power cases.
"""
if not isinstance(delegation, dict):
return str(delegation)
parts = [f"the limit for {auth} is {limit if limit and str(limit) != '---' else 'NIL'}" for auth, limit in delegation.items()]
return ", ".join(parts) if parts else "No specific delegation provided."
def format_remarks(remarks: Any) -> str:
"""Safely formats the 'remarks' field, handling various data types."""
if isinstance(remarks, list):
remark_parts = []
for item in remarks:
if isinstance(item, dict):
for key, value in item.items():
remark_parts.append(f"{key}: {value}")
else:
remark_parts.append(str(item))
return " ".join(remark_parts)
return str(remarks)
def smart_chunk_size(context: Dict) -> int:
"""
Adaptive chunk sizing based on content type.
Smaller chunks for dense information, larger for descriptive.
"""
if "delegation" in context:
return 1000 # Smaller for dense financial/delegation info
elif "composition" in context:
return 800 # Smaller for structural/hierarchical info
elif "items" in context or "exclusions" in context:
return 600 # Smaller for list-based info
else:
return 1500 # Default for descriptive content
def build_descriptive_text(context: Dict) -> str:
"""
Builds a clear, descriptive, natural language text by combining fields.
Focused for best relevance and contextual richness.
"""
text_parts = []
if context.get("title"):
text_parts.append(f"Regarding the policy '{context['title']}'")
specific_desc = context.get('description') or context.get('method')
if specific_desc and specific_desc != context.get('title'):
text_parts.append(f"specifically for '{specific_desc}'")
if "delegation" in context:
delegation_text = format_delegation_text(context["delegation"])
text_parts.append(f", financial delegations are: {delegation_text}.")
elif "composition" in context:
composition_parts = []
for item in context["composition"]:
if isinstance(item, dict):
for role, members in item.items():
member_text = (f"the {role} is {members}" if isinstance(members, str)
else f"the {role} are: {', '.join(members)}")
composition_parts.append(member_text)
text_parts.append(f", the composition is: {'; '.join(composition_parts)}.")
if "remarks" in context and context["remarks"]:
remarks_text = format_remarks(context["remarks"])
text_parts.append(f" Important remarks include: {remarks_text}")
# Join all parts into a flowing sentence
return " ".join(text_parts).strip()
def split_text_into_chunks(text: str, max_char_length: int = 1500, overlap: int = 200) -> List[str]:
"""
Splits a long text into smaller chunks with controlled overlap.
Uses sentence tokenization for natural splits.
"""
text = text.strip()
if len(text) <= max_char_length:
return [text]
# Explicitly specify language to avoid punkt_tab error
sentences = nltk.tokenize.sent_tokenize(text, language='english')
chunks = []
current_chunk = ""
for sentence in sentences:
# +1 for space/newline likely added between sentences
if len(current_chunk) + len(sentence) + 1 <= max_char_length:
current_chunk += (" " + sentence) if current_chunk else sentence
else:
chunks.append(current_chunk.strip())
# Start next chunk with overlap from end of previous chunk (by characters)
if overlap < len(current_chunk):
current_chunk = current_chunk[-overlap:] + " " + sentence
else:
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def process_entry(data: Dict, parent_context: Dict = None) -> List[Dict]:
"""
Processes a JSON policy entry and returns granular, context-rich chunks.
Applies recursive traversal and implements chunk size limiting.
"""
context = {**(parent_context or {}), **data}
chunks = []
# Handler 1: Simple Item Lists (ex: rules, exclusions)
list_key = next((key for key in ["items", "exclusions"] if key in data and isinstance(data.get(key), list)), None)
if list_key:
base_title = context.get('title', 'a policy')
for item in data[list_key]:
if isinstance(item, str):
# Build chunk text with clear descriptive prefix for relevance
text = f"A rule regarding '{base_title}' is: {item}."
# Split if too long
for sub_chunk in split_text_into_chunks(text):
chunks.append(create_chunk(context, sub_chunk))
return chunks
# Handler 2: Recursive traversal for nested dictionaries/lists
has_recursed = False
for key, value in data.items():
if isinstance(value, list) and value and all(isinstance(item, dict) for item in value):
for item in value:
chunks.extend(process_entry(item, context))
has_recursed = True
# Handler 3: Leaf nodes with delegation, composition or description
if not has_recursed and ("delegation" in data or "composition" in data or "description" in data):
text = build_descriptive_text(context)
# Split long descriptive text intelligently with adaptive chunk size
max_size = smart_chunk_size(data)
for chunk_text in split_text_into_chunks(text, max_char_length=max_size):
chunks.append(create_chunk(context, chunk_text))
return chunks
def main():
"""Main orchestration to read input, process, and write chunks."""
print(f"Starting to process '{INPUT_FILE}' for improved granular chunking...")
all_chunks = []
try:
with open(INPUT_FILE, 'r', encoding='utf-8') as f:
for i, line in enumerate(f):
try:
data = json.loads(line)
processed = process_entry(data)
if processed:
all_chunks.extend(processed)
except json.JSONDecodeError:
print(f"Warning: Skipping malformed JSON on line {i+1}")
continue
except FileNotFoundError:
print(f"Error: Input file '{INPUT_FILE}' not found.")
return
print(f"Generated {len(all_chunks)} chunks before deduplication.")
# Deduplicate by text content (retaining last occurrences)
unique_chunks_map = {}
for chunk in all_chunks:
unique_chunks_map[chunk['text']] = chunk
unique_chunks = list(unique_chunks_map.values())
print(f"{len(unique_chunks)} unique chunks after deduplication.")
# Write output in JSONL format for later vector DB ingestion
with open(OUTPUT_FILE, 'w', encoding='utf-8') as outf:
for chunk in unique_chunks:
outf.write(json.dumps(chunk, ensure_ascii=False) + "\n")
print(f"Successfully wrote improved granular chunks to '{OUTPUT_FILE}'.")
if __name__ == "__main__":
main()
|