ChatbotDemo / app /policy_vector_db.py
Kalpokoch's picture
improvements dec
0194a83
raw
history blame
9.1 kB
import os
import json
import torch
from typing import List, Dict
from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.config import Settings
import logging
# --- Basic Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class PolicyVectorDB:
"""
Manages the connection, population, and querying of a ChromaDB vector database
for policy documents.
"""
def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.5):
self.persist_directory = persist_directory
self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
self.collection_name = "neepco_dop_policies"
# Using a powerful open-source embedding model.
# Change 'cpu' to 'cuda' if a GPU is available for significantly faster embedding.
logger.info("Loading embedding model 'BAAI/bge-large-en-v1.5'. This may take a moment...")
self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device='cpu')
logger.info("Embedding model loaded successfully.")
self.collection = None # Initialize collection as None for lazy loading
self.top_k_default = top_k_default
self.relevance_threshold = relevance_threshold
def _get_collection(self):
"""
Retrieves or creates the ChromaDB collection. Implements lazy loading.
"""
if self.collection is None:
self.collection = self.client.get_or_create_collection(
name=self.collection_name,
metadata={"description": "NEEPCO Delegation of Powers Policy"}
)
return self.collection
def _flatten_metadata(self, metadata: Dict) -> Dict:
"""Ensures all metadata values are strings, as required by some ChromaDB versions."""
return {key: str(value) for key, value in metadata.items()}
def expand_query(self, query_text: str) -> List[str]:
"""
Generates query variations to improve retrieval.
Uses simple heuristics - zero LLM cost.
"""
queries = [query_text]
# Expand with synonyms for policy-related terms
synonyms = {
"approval": ["approval", "consent", "authorization", "permission"],
"limit": ["limit", "threshold", "ceiling", "maximum"],
"authority": ["authority", "official", "person", "representative"],
"delegate": ["delegate", "authorize", "empower", "assign"],
"power": ["power", "authority", "delegation", "responsibility"],
"financial": ["financial", "monetary", "funds", "budget"],
}
for term, variants in synonyms.items():
if term in query_text.lower():
for variant in variants:
if variant.lower() not in query_text.lower():
expanded = query_text.replace(term, variant)
if expanded not in queries:
queries.append(expanded)
if len(queries) >= 4:
break
if len(queries) >= 4:
break
return queries[:4] # Limit to 4 variations
def add_chunks(self, chunks: List[Dict]):
"""
Adds a list of chunks to the vector database, skipping any that already exist.
"""
collection = self._get_collection()
if not chunks:
logger.info("No chunks provided to add.")
return
chunks_with_ids = [c for c in chunks if c.get('id')]
if len(chunks) != len(chunks_with_ids):
logger.warning(f"Skipped {len(chunks) - len(chunks_with_ids)} chunks that were missing an 'id'.")
if not chunks_with_ids:
return
existing_ids = set(collection.get(ids=[str(c['id']) for c in chunks_with_ids])['ids'])
new_chunks = [chunk for chunk in chunks_with_ids if str(chunk.get('id')) not in existing_ids]
if not new_chunks:
logger.info("All provided chunks already exist in the database. No new data to add.")
return
logger.info(f"Adding {len(new_chunks)} new chunks to the vector database...")
# Process in batches for efficiency
batch_size = 32 # Reduced batch size for potentially large embeddings
for i in range(0, len(new_chunks), batch_size):
batch = new_chunks[i:i + batch_size]
ids = [str(chunk['id']) for chunk in batch]
texts = [chunk['text'] for chunk in batch]
metadatas = [self._flatten_metadata(chunk.get('metadata', {})) for chunk in batch]
# For BGE models, it's recommended not to add instructions to the document embeddings
embeddings = self.embedding_model.encode(texts, normalize_embeddings=True, show_progress_bar=False).tolist()
collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
logger.info(f"Added batch {i//batch_size + 1}/{(len(new_chunks) + batch_size - 1) // batch_size}")
logger.info(f"Finished adding {len(new_chunks)} chunks.")
def search(self, query_text: str, top_k: int = None) -> List[Dict]:
"""
Searches the vector database for a given query text with expansion.
Returns a list of results filtered by a relevance threshold.
"""
collection = self._get_collection()
k = top_k if top_k is not None else self.top_k_default
# Expand query for better recall
queries = self.expand_query(query_text)
all_results = {}
for query in queries:
# Add the recommended instruction prefix for BGE retrieval models.
instructed_query = f"Represent this sentence for searching relevant passages: {query}"
# Normalize embeddings for more accurate similarity search.
query_embedding = self.embedding_model.encode([instructed_query], normalize_embeddings=True).tolist()
# Retrieve more results initially to allow for filtering
results = collection.query(
query_embeddings=query_embedding,
n_results=k * 2, # Retrieve more to filter by threshold
include=["documents", "metadatas", "distances"]
)
if results and results.get('documents') and results['documents'][0]:
for i, doc in enumerate(results['documents'][0]):
# The distance for normalized embeddings is often interpreted as 1 - cosine_similarity
relevance_score = 1 - results['distances'][0][i]
if relevance_score >= self.relevance_threshold:
key = doc # Use document text as key
# Keep highest relevance score for duplicate documents
if key not in all_results or relevance_score > all_results[key]['relevance_score']:
all_results[key] = {
'text': doc,
'metadata': results['metadatas'][0][i],
'relevance_score': relevance_score
}
# Sort by relevance score and return the top_k results
return sorted(all_results.values(), key=lambda x: x['relevance_score'], reverse=True)[:k]
def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> bool:
"""
Checks if the DB is empty and populates it from a JSONL file if needed.
"""
try:
if db_instance._get_collection().count() > 0:
logger.info("Vector database already contains data. Skipping population.")
return True
logger.info("Vector database is empty. Attempting to populate from chunks file.")
if not os.path.exists(chunks_file_path):
logger.error(f"Chunks file not found at '{chunks_file_path}'. Cannot populate DB.")
return False
chunks_to_add = []
with open(chunks_file_path, 'r', encoding='utf-8') as f:
for line in f:
try:
chunks_to_add.append(json.loads(line))
except json.JSONDecodeError:
logger.warning(f"Skipping malformed line in chunks file: {line.strip()}")
if not chunks_to_add:
logger.warning(f"Chunks file at '{chunks_file_path}' is empty or invalid. No data to add.")
return False
db_instance.add_chunks(chunks_to_add)
logger.info("Vector database population attempt complete.")
return True
except Exception as e:
logger.error(f"An error occurred during DB population check: {e}", exc_info=True)
return False