Spaces:
Running
Running
Update app/app.py
Browse files- app/app.py +14 -27
app/app.py
CHANGED
|
@@ -1,13 +1,8 @@
|
|
| 1 |
-
# =======================
|
| 2 |
-
# β‘ GGUF + llama-cpp-python FastAPI App for HF Spaces (CPU Optimized)
|
| 3 |
-
# =======================
|
| 4 |
-
|
| 5 |
from fastapi import FastAPI
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from llama_cpp import Llama
|
| 8 |
-
import os
|
| 9 |
import logging
|
| 10 |
-
|
| 11 |
from app.policy_vector_db import PolicyVectorDB, ensure_db_populated
|
| 12 |
|
| 13 |
# -----------------------------
|
|
@@ -21,15 +16,12 @@ logger = logging.getLogger("app")
|
|
| 21 |
# -----------------------------
|
| 22 |
app = FastAPI()
|
| 23 |
|
| 24 |
-
# -----------------------------
|
| 25 |
-
# β
Health Check Endpoint
|
| 26 |
-
# -----------------------------
|
| 27 |
@app.get("/")
|
| 28 |
async def root():
|
| 29 |
return {"status": "β
Server is running and ready."}
|
| 30 |
|
| 31 |
# -----------------------------
|
| 32 |
-
# β
Feedback Collection
|
| 33 |
# -----------------------------
|
| 34 |
class Feedback(BaseModel):
|
| 35 |
question: str
|
|
@@ -51,16 +43,15 @@ logger.info("[INFO] Initializing vector DB...")
|
|
| 51 |
db = PolicyVectorDB(
|
| 52 |
persist_directory=DB_PERSIST_DIRECTORY,
|
| 53 |
top_k_default=7,
|
| 54 |
-
relevance_threshold=0.45 # Lowered for broader
|
| 55 |
)
|
| 56 |
-
|
| 57 |
if not ensure_db_populated(db, CHUNKS_FILE_PATH):
|
| 58 |
logger.warning("[WARNING] DB not populated. Chunks file may be missing.")
|
| 59 |
else:
|
| 60 |
logger.info("[INFO] Vector DB ready.")
|
| 61 |
|
| 62 |
# -----------------------------
|
| 63 |
-
# β
Load GGUF Model
|
| 64 |
# -----------------------------
|
| 65 |
MODEL_PATH = "/app/tinyllama_dop_q4_k_m.gguf"
|
| 66 |
|
|
@@ -76,7 +67,7 @@ llm = Llama(
|
|
| 76 |
logger.info("[INFO] Model loaded successfully.")
|
| 77 |
|
| 78 |
# -----------------------------
|
| 79 |
-
# β
|
| 80 |
# -----------------------------
|
| 81 |
class Query(BaseModel):
|
| 82 |
question: str
|
|
@@ -86,27 +77,23 @@ class Query(BaseModel):
|
|
| 86 |
# -----------------------------
|
| 87 |
@app.post("/chat")
|
| 88 |
async def chat(query: Query):
|
| 89 |
-
question = query.question
|
| 90 |
logger.info(f"[QUERY] {question}")
|
| 91 |
|
| 92 |
-
# Step 1: Retrieve from Vector DB
|
| 93 |
search_results = db.search(question)
|
|
|
|
| 94 |
|
| 95 |
-
#
|
| 96 |
-
context_chunks = [res for res in search_results if res["relevance_score"] > db.relevance_threshold]
|
| 97 |
-
|
| 98 |
-
# Debug: log all retrieved chunks with scores
|
| 99 |
for i, r in enumerate(search_results):
|
| 100 |
-
logger.info(f"[DEBUG] Chunk {i+1} Score: {r['relevance_score']:.4f} | Snippet: {r['text'][:80]}")
|
| 101 |
|
| 102 |
-
|
| 103 |
-
if not context_chunks:
|
| 104 |
logger.warning("[WARN] No relevant context passed threshold. Using top-2 chunks as fallback.")
|
| 105 |
-
|
| 106 |
|
| 107 |
-
context = "\n".join([
|
| 108 |
|
| 109 |
-
#
|
| 110 |
prompt = f"""You are a helpful assistant trained on NEEPCO Delegation of Powers policies.
|
| 111 |
|
| 112 |
### Relevant Context:
|
|
@@ -117,7 +104,7 @@ async def chat(query: Query):
|
|
| 117 |
|
| 118 |
### Answer:"""
|
| 119 |
|
| 120 |
-
#
|
| 121 |
response = llm(prompt, max_tokens=200, stop=["###"], temperature=0.2)
|
| 122 |
answer = response["choices"][0]["text"].strip()
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from llama_cpp import Llama
|
|
|
|
| 4 |
import logging
|
| 5 |
+
import os
|
| 6 |
from app.policy_vector_db import PolicyVectorDB, ensure_db_populated
|
| 7 |
|
| 8 |
# -----------------------------
|
|
|
|
| 16 |
# -----------------------------
|
| 17 |
app = FastAPI()
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
@app.get("/")
|
| 20 |
async def root():
|
| 21 |
return {"status": "β
Server is running and ready."}
|
| 22 |
|
| 23 |
# -----------------------------
|
| 24 |
+
# β
Feedback Collection
|
| 25 |
# -----------------------------
|
| 26 |
class Feedback(BaseModel):
|
| 27 |
question: str
|
|
|
|
| 43 |
db = PolicyVectorDB(
|
| 44 |
persist_directory=DB_PERSIST_DIRECTORY,
|
| 45 |
top_k_default=7,
|
| 46 |
+
relevance_threshold=0.45 # Lowered for broader retrieval
|
| 47 |
)
|
|
|
|
| 48 |
if not ensure_db_populated(db, CHUNKS_FILE_PATH):
|
| 49 |
logger.warning("[WARNING] DB not populated. Chunks file may be missing.")
|
| 50 |
else:
|
| 51 |
logger.info("[INFO] Vector DB ready.")
|
| 52 |
|
| 53 |
# -----------------------------
|
| 54 |
+
# β
Load GGUF Model (llama-cpp-python)
|
| 55 |
# -----------------------------
|
| 56 |
MODEL_PATH = "/app/tinyllama_dop_q4_k_m.gguf"
|
| 57 |
|
|
|
|
| 67 |
logger.info("[INFO] Model loaded successfully.")
|
| 68 |
|
| 69 |
# -----------------------------
|
| 70 |
+
# β
Query Schema
|
| 71 |
# -----------------------------
|
| 72 |
class Query(BaseModel):
|
| 73 |
question: str
|
|
|
|
| 77 |
# -----------------------------
|
| 78 |
@app.post("/chat")
|
| 79 |
async def chat(query: Query):
|
| 80 |
+
question = query.question.strip()
|
| 81 |
logger.info(f"[QUERY] {question}")
|
| 82 |
|
|
|
|
| 83 |
search_results = db.search(question)
|
| 84 |
+
filtered = [r for r in search_results if r["relevance_score"] > db.relevance_threshold]
|
| 85 |
|
| 86 |
+
# Logging for debug
|
|
|
|
|
|
|
|
|
|
| 87 |
for i, r in enumerate(search_results):
|
| 88 |
+
logger.info(f"[DEBUG] Chunk {i+1} | Score: {r['relevance_score']:.4f} | Snippet: {r['text'][:80]}")
|
| 89 |
|
| 90 |
+
if not filtered:
|
|
|
|
| 91 |
logger.warning("[WARN] No relevant context passed threshold. Using top-2 chunks as fallback.")
|
| 92 |
+
filtered = search_results[:2]
|
| 93 |
|
| 94 |
+
context = "\n".join([r["text"] for r in filtered]) or "No relevant context found."
|
| 95 |
|
| 96 |
+
# Prompt Template
|
| 97 |
prompt = f"""You are a helpful assistant trained on NEEPCO Delegation of Powers policies.
|
| 98 |
|
| 99 |
### Relevant Context:
|
|
|
|
| 104 |
|
| 105 |
### Answer:"""
|
| 106 |
|
| 107 |
+
# Run LLM
|
| 108 |
response = llm(prompt, max_tokens=200, stop=["###"], temperature=0.2)
|
| 109 |
answer = response["choices"][0]["text"].strip()
|
| 110 |
|