Spaces:
Running
Running
Update app/policy_vector_db.py
Browse files- app/policy_vector_db.py +20 -46
app/policy_vector_db.py
CHANGED
|
@@ -7,22 +7,17 @@ import chromadb
|
|
| 7 |
from chromadb.config import Settings
|
| 8 |
import logging
|
| 9 |
|
| 10 |
-
logger = logging.getLogger("app")
|
| 11 |
|
| 12 |
class PolicyVectorDB:
|
| 13 |
def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.5):
|
| 14 |
self.persist_directory = persist_directory
|
| 15 |
-
# Allow reset is useful for development, can be removed in production if not needed
|
| 16 |
self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
|
| 17 |
self.collection_name = "neepco_dop_policies"
|
| 18 |
-
|
| 19 |
-
# IMPORTANT: Keeping BAAI/bge-large-en-v1.5 as per your requirement for accuracy.
|
| 20 |
-
# Be aware this will be slow on CPU.
|
| 21 |
self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 22 |
-
|
| 23 |
self.collection = None
|
| 24 |
self.top_k_default = top_k_default
|
| 25 |
-
self.relevance_threshold = relevance_threshold
|
| 26 |
|
| 27 |
def _get_collection(self):
|
| 28 |
if self.collection is None:
|
|
@@ -33,8 +28,6 @@ class PolicyVectorDB:
|
|
| 33 |
return self.collection
|
| 34 |
|
| 35 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
| 36 |
-
# ChromaDB requires metadata values to be JSON-serializable strings, ints, floats, or bools.
|
| 37 |
-
# Ensuring all values are string for consistency and compatibility.
|
| 38 |
return {key: str(value) for key, value in metadata.items()}
|
| 39 |
|
| 40 |
def add_chunks(self, chunks: List[Dict]):
|
|
@@ -43,58 +36,43 @@ class PolicyVectorDB:
|
|
| 43 |
logger.info("No chunks provided to add.")
|
| 44 |
return
|
| 45 |
|
| 46 |
-
# Fetch existing IDs to avoid adding duplicates
|
| 47 |
existing_ids = set()
|
| 48 |
try:
|
| 49 |
-
# This can be slow for very large collections, consider optimizing if needed
|
| 50 |
existing_ids = set(collection.get(include=[])['ids'])
|
| 51 |
except Exception as e:
|
| 52 |
-
logger.warning(f"Could not retrieve existing IDs from ChromaDB: {e}
|
| 53 |
|
| 54 |
new_chunks = [chunk for chunk in chunks if chunk.get('id') and chunk['id'] not in existing_ids]
|
| 55 |
-
|
| 56 |
if not new_chunks:
|
| 57 |
logger.info("No new chunks to add.")
|
| 58 |
return
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
batch_size = 128 # Good batch size for embedding
|
| 63 |
for i in range(0, len(new_chunks), batch_size):
|
| 64 |
batch = new_chunks[i:i + batch_size]
|
| 65 |
texts = [chunk['text'] for chunk in batch]
|
| 66 |
ids = [chunk['id'] for chunk in batch]
|
| 67 |
-
metadatas = [self._flatten_metadata(chunk
|
| 68 |
-
|
| 69 |
-
# Embed texts. This is the CPU-heavy part for BAAI/bge-large-en-v1.5
|
| 70 |
embeddings = self.embedding_model.encode(texts, show_progress_bar=False).tolist()
|
| 71 |
-
|
| 72 |
collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
|
| 73 |
-
logger.info(f"Added batch {i//batch_size + 1}/{(len(new_chunks) + batch_size - 1) // batch_size}")
|
| 74 |
logger.info(f"Finished adding {len(new_chunks)} chunks.")
|
| 75 |
|
| 76 |
def search(self, query_text: str, top_k: int = None) -> List[Dict]:
|
| 77 |
collection = self._get_collection()
|
| 78 |
-
|
| 79 |
-
# Embed query text. This is also CPU-heavy for BAAI/bge-large-en-v1.5
|
| 80 |
query_embedding = self.embedding_model.encode([query_text]).tolist()
|
| 81 |
-
|
| 82 |
-
|
| 83 |
results = collection.query(
|
| 84 |
query_embeddings=query_embedding,
|
| 85 |
n_results=top_k,
|
| 86 |
include=["documents", "metadatas", "distances"]
|
| 87 |
)
|
| 88 |
-
|
| 89 |
search_results = []
|
| 90 |
-
|
| 91 |
-
if results and results['documents'] and results['documents'][0]:
|
| 92 |
for i, doc in enumerate(results['documents'][0]):
|
| 93 |
-
|
| 94 |
-
# Converting to a similarity score where 1 is perfect match, 0 is no match.
|
| 95 |
-
# A common conversion for L2 is 1 / (1 + distance) or max_dist - dist.
|
| 96 |
-
# Here, 1 - distance is used, assuming normalized embeddings leading to dist between 0 and 2.
|
| 97 |
-
relevance_score = 1 - results['distances'][0][i]
|
| 98 |
search_results.append({
|
| 99 |
'text': doc,
|
| 100 |
'metadata': results['metadatas'][0][i],
|
|
@@ -103,30 +81,26 @@ class PolicyVectorDB:
|
|
| 103 |
return search_results
|
| 104 |
|
| 105 |
def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str):
|
| 106 |
-
"""
|
| 107 |
-
Ensures the ChromaDB is populated with data from the chunks file if it's currently empty.
|
| 108 |
-
"""
|
| 109 |
try:
|
| 110 |
-
# Check if the collection already has data
|
| 111 |
if db_instance._get_collection().count() == 0:
|
| 112 |
-
logger.info("Vector database is empty. Attempting to populate
|
| 113 |
if not os.path.exists(chunks_file_path):
|
| 114 |
-
logger.error(f"Chunks file not found at {chunks_file_path}
|
| 115 |
return False
|
| 116 |
-
|
| 117 |
with open(chunks_file_path, 'r', encoding='utf-8') as f:
|
| 118 |
chunks_to_add = json.load(f)
|
| 119 |
-
|
| 120 |
if not chunks_to_add:
|
| 121 |
-
logger.warning(
|
| 122 |
return False
|
| 123 |
|
| 124 |
db_instance.add_chunks(chunks_to_add)
|
| 125 |
-
logger.info("
|
| 126 |
return True
|
| 127 |
else:
|
| 128 |
-
logger.info("
|
| 129 |
return True
|
| 130 |
except Exception as e:
|
| 131 |
-
logger.error(f"DB Population Error: {e}", exc_info=True)
|
| 132 |
-
return False
|
|
|
|
| 7 |
from chromadb.config import Settings
|
| 8 |
import logging
|
| 9 |
|
| 10 |
+
logger = logging.getLogger("app")
|
| 11 |
|
| 12 |
class PolicyVectorDB:
|
| 13 |
def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.5):
|
| 14 |
self.persist_directory = persist_directory
|
|
|
|
| 15 |
self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
|
| 16 |
self.collection_name = "neepco_dop_policies"
|
|
|
|
|
|
|
|
|
|
| 17 |
self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device='cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 18 |
self.collection = None
|
| 19 |
self.top_k_default = top_k_default
|
| 20 |
+
self.relevance_threshold = relevance_threshold
|
| 21 |
|
| 22 |
def _get_collection(self):
|
| 23 |
if self.collection is None:
|
|
|
|
| 28 |
return self.collection
|
| 29 |
|
| 30 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
|
|
|
|
|
|
| 31 |
return {key: str(value) for key, value in metadata.items()}
|
| 32 |
|
| 33 |
def add_chunks(self, chunks: List[Dict]):
|
|
|
|
| 36 |
logger.info("No chunks provided to add.")
|
| 37 |
return
|
| 38 |
|
|
|
|
| 39 |
existing_ids = set()
|
| 40 |
try:
|
|
|
|
| 41 |
existing_ids = set(collection.get(include=[])['ids'])
|
| 42 |
except Exception as e:
|
| 43 |
+
logger.warning(f"Could not retrieve existing IDs from ChromaDB: {e}")
|
| 44 |
|
| 45 |
new_chunks = [chunk for chunk in chunks if chunk.get('id') and chunk['id'] not in existing_ids]
|
|
|
|
| 46 |
if not new_chunks:
|
| 47 |
logger.info("No new chunks to add.")
|
| 48 |
return
|
| 49 |
|
| 50 |
+
batch_size = 128
|
|
|
|
|
|
|
| 51 |
for i in range(0, len(new_chunks), batch_size):
|
| 52 |
batch = new_chunks[i:i + batch_size]
|
| 53 |
texts = [chunk['text'] for chunk in batch]
|
| 54 |
ids = [chunk['id'] for chunk in batch]
|
| 55 |
+
metadatas = [self._flatten_metadata(chunk.get('metadata', {})) for chunk in batch]
|
|
|
|
|
|
|
| 56 |
embeddings = self.embedding_model.encode(texts, show_progress_bar=False).tolist()
|
|
|
|
| 57 |
collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
|
| 58 |
+
logger.info(f"Added batch {i // batch_size + 1}/{(len(new_chunks) + batch_size - 1) // batch_size}")
|
| 59 |
logger.info(f"Finished adding {len(new_chunks)} chunks.")
|
| 60 |
|
| 61 |
def search(self, query_text: str, top_k: int = None) -> List[Dict]:
|
| 62 |
collection = self._get_collection()
|
|
|
|
|
|
|
| 63 |
query_embedding = self.embedding_model.encode([query_text]).tolist()
|
| 64 |
+
top_k = top_k or self.top_k_default
|
| 65 |
+
|
| 66 |
results = collection.query(
|
| 67 |
query_embeddings=query_embedding,
|
| 68 |
n_results=top_k,
|
| 69 |
include=["documents", "metadatas", "distances"]
|
| 70 |
)
|
| 71 |
+
|
| 72 |
search_results = []
|
| 73 |
+
if results and results['documents'][0]:
|
|
|
|
| 74 |
for i, doc in enumerate(results['documents'][0]):
|
| 75 |
+
relevance_score = 1 - results['distances'][0][i]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
search_results.append({
|
| 77 |
'text': doc,
|
| 78 |
'metadata': results['metadatas'][0][i],
|
|
|
|
| 81 |
return search_results
|
| 82 |
|
| 83 |
def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str):
|
|
|
|
|
|
|
|
|
|
| 84 |
try:
|
|
|
|
| 85 |
if db_instance._get_collection().count() == 0:
|
| 86 |
+
logger.info("Vector database is empty. Attempting to populate...")
|
| 87 |
if not os.path.exists(chunks_file_path):
|
| 88 |
+
logger.error(f"Chunks file not found at {chunks_file_path}")
|
| 89 |
return False
|
| 90 |
+
|
| 91 |
with open(chunks_file_path, 'r', encoding='utf-8') as f:
|
| 92 |
chunks_to_add = json.load(f)
|
| 93 |
+
|
| 94 |
if not chunks_to_add:
|
| 95 |
+
logger.warning("Chunks file is empty.")
|
| 96 |
return False
|
| 97 |
|
| 98 |
db_instance.add_chunks(chunks_to_add)
|
| 99 |
+
logger.info("Database population complete.")
|
| 100 |
return True
|
| 101 |
else:
|
| 102 |
+
logger.info("Database already populated.")
|
| 103 |
return True
|
| 104 |
except Exception as e:
|
| 105 |
+
logger.error(f"DB Population Error: {e}", exc_info=True)
|
| 106 |
+
return False
|