Kalpokoch commited on
Commit
ea6be63
·
verified ·
1 Parent(s): f1d5824

Update app/policy_vector_db.py

Browse files
Files changed (1) hide show
  1. app/policy_vector_db.py +48 -108
app/policy_vector_db.py CHANGED
@@ -1,7 +1,7 @@
1
  import os
2
  import json
3
  import torch
4
- from typing import List, Dict, Optional
5
  from sentence_transformers import SentenceTransformer
6
  import chromadb
7
  from chromadb.config import Settings
@@ -11,20 +11,23 @@ import logging
11
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
12
  logger = logging.getLogger(__name__)
13
 
14
-
15
  class PolicyVectorDB:
16
  """
17
  Manages the connection, population, and querying of a ChromaDB vector database
18
  for policy documents.
19
  """
20
- def __init__(self, persist_directory: str, top_k_default: int = 3, relevance_threshold: float = 0.35):
21
  self.persist_directory = persist_directory
22
  self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
23
  self.collection_name = "neepco_dop_policies"
 
 
 
24
  logger.info("Loading embedding model 'BAAI/bge-large-en-v1.5'. This may take a moment...")
25
- self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device='cpu')
26
  logger.info("Embedding model loaded successfully.")
27
- self.collection = None # Initialize collection as None for lazy loading
 
28
  self.top_k_default = top_k_default
29
  self.relevance_threshold = relevance_threshold
30
 
@@ -40,23 +43,12 @@ class PolicyVectorDB:
40
  return self.collection
41
 
42
  def _flatten_metadata(self, metadata: Dict) -> Dict:
43
- """
44
- Ensures all metadata values are strings, including flattening lists.
45
- """
46
- flattened = {}
47
- for key, value in metadata.items():
48
- if isinstance(value, list):
49
- flattened[key] = ', '.join(map(str, value))
50
- elif value is None:
51
- flattened[key] = ''
52
- else:
53
- flattened[key] = str(value)
54
- return flattened
55
 
56
  def add_chunks(self, chunks: List[Dict]):
57
  """
58
  Adds a list of chunks to the vector database, skipping any that already exist.
59
- Token count is added for each chunk if possible.
60
  """
61
  collection = self._get_collection()
62
  if not chunks:
@@ -69,122 +61,70 @@ class PolicyVectorDB:
69
  if not chunks_with_ids:
70
  return
71
 
72
- ids_to_check = [str(c['id']) for c in chunks_with_ids]
73
- existing_records = collection.get(ids=ids_to_check)
74
- existing_ids = set(existing_records['ids'])
75
  new_chunks = [chunk for chunk in chunks_with_ids if str(chunk.get('id')) not in existing_ids]
76
 
77
  if not new_chunks:
78
  logger.info("All provided chunks already exist in the database. No new data to add.")
79
  return
80
-
81
  logger.info(f"Adding {len(new_chunks)} new chunks to the vector database...")
82
- batch_size = 32
 
 
83
  for i in range(0, len(new_chunks), batch_size):
84
  batch = new_chunks[i:i + batch_size]
85
-
86
  ids = [str(chunk['id']) for chunk in batch]
87
  texts = [chunk['text'] for chunk in batch]
88
- metadatas = []
89
- for chunk in batch:
90
- metadata = self._flatten_metadata(chunk.get('metadata', {}))
91
- # Add token count for debugging/monitoring
92
- try:
93
- import tiktoken
94
- encoding = tiktoken.get_encoding("cl100k_base")
95
- token_count = len(encoding.encode(chunk['text']))
96
- metadata['token_count'] = str(token_count)
97
- except Exception:
98
- pass
99
- metadatas.append(metadata)
100
-
101
- embeddings = self.embedding_model.encode(
102
- texts, normalize_embeddings=True, show_progress_bar=False
103
- ).tolist()
104
  collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
105
  logger.info(f"Added batch {i//batch_size + 1}/{(len(new_chunks) + batch_size - 1) // batch_size}")
106
-
107
  logger.info(f"Finished adding {len(new_chunks)} chunks.")
108
 
109
- def search(self, query_text: str, top_k: Optional[int] = None, filter_by_section: Optional[str] = None,
110
- filter_by_keywords: Optional[List[str]] = None) -> List[Dict]:
111
  """
112
- Searches the vector database. Optionally filter by section or by keywords in the financial_keywords metadata field.
113
- Results are filtered by a relevance threshold.
114
  """
115
  collection = self._get_collection()
116
-
117
- # Add instruction prefix for BGE retrieval models.
118
  instructed_query = f"Represent this sentence for searching relevant passages: {query_text}"
 
 
119
  query_embedding = self.embedding_model.encode([instructed_query], normalize_embeddings=True).tolist()
 
120
  k = top_k if top_k is not None else self.top_k_default
121
-
122
- # Filtering logic
123
- where_clause = {}
124
- if filter_by_section:
125
- where_clause["section"] = filter_by_section
126
-
127
- query_params = {
128
- "query_embeddings": query_embedding,
129
- "n_results": k * 2,
130
- "include": ["documents", "metadatas", "distances"]
131
- }
132
- if where_clause:
133
- query_params["where"] = where_clause
134
-
135
- results = collection.query(**query_params)
136
-
137
  search_results = []
138
  if results and results.get('documents') and results['documents'][0]:
139
- for i, doc in enumerate(results['documents']):
140
- relevance_score = 1 - results['distances'][i]
141
- metadata = results['metadatas'][i]
142
-
143
- # Keyword filtering if required
144
- keep = True
145
- if filter_by_keywords and metadata.get('financial_keywords'):
146
- stored_keywords = [kw.strip() for kw in metadata['financial_keywords'].split(',')]
147
- if not any(kw in stored_keywords for kw in filter_by_keywords):
148
- keep = False
149
- if keep and relevance_score >= self.relevance_threshold:
150
  search_results.append({
151
  'text': doc,
152
- 'metadata': metadata,
153
  'relevance_score': relevance_score
154
  })
155
-
 
156
  return sorted(search_results, key=lambda x: x['relevance_score'], reverse=True)[:k]
157
 
158
- def get_stats(self) -> Dict:
159
- """
160
- Get quick analytics for your DB: total chunks, unique sections, counts of keyworded chunks.
161
- """
162
- collection = self._get_collection()
163
- total_count = collection.count()
164
- if total_count == 0:
165
- return {"total_chunks": 0}
166
-
167
- sample = collection.get(limit=min(100, total_count), include=["metadatas"])
168
- sections = set()
169
- has_financial_keywords = 0
170
- has_authority_keywords = 0
171
-
172
- for metadata in sample.get('metadatas', []):
173
- if metadata.get('section'):
174
- sections.add(metadata['section'])
175
- if metadata.get('financial_keywords'):
176
- has_financial_keywords += 1
177
- if metadata.get('authority_keywords'):
178
- has_authority_keywords += 1
179
-
180
- return {
181
- "total_chunks": total_count,
182
- "unique_sections": list(sections),
183
- "chunks_with_financial_keywords": has_financial_keywords,
184
- "chunks_with_authority_keywords": has_authority_keywords,
185
- }
186
-
187
-
188
  def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> bool:
189
  """
190
  Checks if the DB is empty and populates it from a JSONL file if needed.
@@ -198,7 +138,7 @@ def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> b
198
  if not os.path.exists(chunks_file_path):
199
  logger.error(f"Chunks file not found at '{chunks_file_path}'. Cannot populate DB.")
200
  return False
201
-
202
  chunks_to_add = []
203
  with open(chunks_file_path, 'r', encoding='utf-8') as f:
204
  for line in f:
@@ -206,7 +146,7 @@ def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> b
206
  chunks_to_add.append(json.loads(line))
207
  except json.JSONDecodeError:
208
  logger.warning(f"Skipping malformed line in chunks file: {line.strip()}")
209
-
210
  if not chunks_to_add:
211
  logger.warning(f"Chunks file at '{chunks_file_path}' is empty or invalid. No data to add.")
212
  return False
 
1
  import os
2
  import json
3
  import torch
4
+ from typing import List, Dict
5
  from sentence_transformers import SentenceTransformer
6
  import chromadb
7
  from chromadb.config import Settings
 
11
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
12
  logger = logging.getLogger(__name__)
13
 
 
14
  class PolicyVectorDB:
15
  """
16
  Manages the connection, population, and querying of a ChromaDB vector database
17
  for policy documents.
18
  """
19
+ def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.5):
20
  self.persist_directory = persist_directory
21
  self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
22
  self.collection_name = "neepco_dop_policies"
23
+
24
+ # Using a powerful open-source embedding model.
25
+ # Change 'cpu' to 'cuda' if a GPU is available for significantly faster embedding.
26
  logger.info("Loading embedding model 'BAAI/bge-large-en-v1.5'. This may take a moment...")
27
+ self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device='cpu')
28
  logger.info("Embedding model loaded successfully.")
29
+
30
+ self.collection = None # Initialize collection as None for lazy loading
31
  self.top_k_default = top_k_default
32
  self.relevance_threshold = relevance_threshold
33
 
 
43
  return self.collection
44
 
45
  def _flatten_metadata(self, metadata: Dict) -> Dict:
46
+ """Ensures all metadata values are strings, as required by some ChromaDB versions."""
47
+ return {key: str(value) for key, value in metadata.items()}
 
 
 
 
 
 
 
 
 
 
48
 
49
  def add_chunks(self, chunks: List[Dict]):
50
  """
51
  Adds a list of chunks to the vector database, skipping any that already exist.
 
52
  """
53
  collection = self._get_collection()
54
  if not chunks:
 
61
  if not chunks_with_ids:
62
  return
63
 
64
+ existing_ids = set(collection.get(ids=[str(c['id']) for c in chunks_with_ids])['ids'])
 
 
65
  new_chunks = [chunk for chunk in chunks_with_ids if str(chunk.get('id')) not in existing_ids]
66
 
67
  if not new_chunks:
68
  logger.info("All provided chunks already exist in the database. No new data to add.")
69
  return
70
+
71
  logger.info(f"Adding {len(new_chunks)} new chunks to the vector database...")
72
+
73
+ # Process in batches for efficiency
74
+ batch_size = 32 # Reduced batch size for potentially large embeddings
75
  for i in range(0, len(new_chunks), batch_size):
76
  batch = new_chunks[i:i + batch_size]
77
+
78
  ids = [str(chunk['id']) for chunk in batch]
79
  texts = [chunk['text'] for chunk in batch]
80
+ metadatas = [self._flatten_metadata(chunk.get('metadata', {})) for chunk in batch]
81
+
82
+ # For BGE models, it's recommended not to add instructions to the document embeddings
83
+ embeddings = self.embedding_model.encode(texts, normalize_embeddings=True, show_progress_bar=False).tolist()
84
+
 
 
 
 
 
 
 
 
 
 
 
85
  collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
86
  logger.info(f"Added batch {i//batch_size + 1}/{(len(new_chunks) + batch_size - 1) // batch_size}")
87
+
88
  logger.info(f"Finished adding {len(new_chunks)} chunks.")
89
 
90
+ def search(self, query_text: str, top_k: int = None) -> List[Dict]:
 
91
  """
92
+ Searches the vector database for a given query text.
93
+ Returns a list of results filtered by a relevance threshold.
94
  """
95
  collection = self._get_collection()
96
+
97
+ # ✅ IMPROVEMENT: Add the recommended instruction prefix for BGE retrieval models.
98
  instructed_query = f"Represent this sentence for searching relevant passages: {query_text}"
99
+
100
+ # ✅ IMPROVEMENT: Normalize embeddings for more accurate similarity search.
101
  query_embedding = self.embedding_model.encode([instructed_query], normalize_embeddings=True).tolist()
102
+
103
  k = top_k if top_k is not None else self.top_k_default
104
+
105
+ # Retrieve more results initially to allow for filtering
106
+ results = collection.query(
107
+ query_embeddings=query_embedding,
108
+ n_results=k * 2, # Retrieve more to filter by threshold
109
+ include=["documents", "metadatas", "distances"]
110
+ )
111
+
 
 
 
 
 
 
 
 
112
  search_results = []
113
  if results and results.get('documents') and results['documents'][0]:
114
+ for i, doc in enumerate(results['documents'][0]):
115
+ # The distance for normalized embeddings is often interpreted as 1 - cosine_similarity
116
+ relevance_score = 1 - results['distances'][0][i]
117
+
118
+ if relevance_score >= self.relevance_threshold:
 
 
 
 
 
 
119
  search_results.append({
120
  'text': doc,
121
+ 'metadata': results['metadatas'][0][i],
122
  'relevance_score': relevance_score
123
  })
124
+
125
+ # Sort by relevance score and return the top_k results
126
  return sorted(search_results, key=lambda x: x['relevance_score'], reverse=True)[:k]
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> bool:
129
  """
130
  Checks if the DB is empty and populates it from a JSONL file if needed.
 
138
  if not os.path.exists(chunks_file_path):
139
  logger.error(f"Chunks file not found at '{chunks_file_path}'. Cannot populate DB.")
140
  return False
141
+
142
  chunks_to_add = []
143
  with open(chunks_file_path, 'r', encoding='utf-8') as f:
144
  for line in f:
 
146
  chunks_to_add.append(json.loads(line))
147
  except json.JSONDecodeError:
148
  logger.warning(f"Skipping malformed line in chunks file: {line.strip()}")
149
+
150
  if not chunks_to_add:
151
  logger.warning(f"Chunks file at '{chunks_file_path}' is empty or invalid. No data to add.")
152
  return False