Spaces:
Sleeping
Sleeping
Update app/app.py
Browse files- app/app.py +68 -14
app/app.py
CHANGED
|
@@ -1,25 +1,79 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
|
|
|
|
|
|
| 2 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
token = os.getenv("HF_TOKEN")
|
| 11 |
-
if not token:
|
| 12 |
-
raise EnvironmentError("HF_TOKEN not found in environment")
|
| 13 |
|
| 14 |
-
|
|
|
|
| 15 |
repo_id="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 16 |
filename="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
| 17 |
-
local_dir="/app/models",
|
| 18 |
token=os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
def root():
|
| 25 |
-
return {"message": "TinyLlama FastAPI app is running"}
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
import os
|
| 7 |
+
import json
|
| 8 |
+
import numpy as np
|
| 9 |
+
from typing import List
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 12 |
|
| 13 |
+
# Load processed chunks (RAG context source)
|
| 14 |
+
with open("processed_chunks.json", "r") as f:
|
| 15 |
+
chunks = json.load(f)
|
| 16 |
+
|
| 17 |
+
# Load embeddings model (use a lightweight one for Docker CPU)
|
| 18 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 19 |
|
| 20 |
+
# Precompute embeddings
|
| 21 |
+
chunk_texts = [chunk["text"] for chunk in chunks]
|
| 22 |
+
chunk_embeddings = embedder.encode(chunk_texts, convert_to_tensor=False)
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# Download model file
|
| 25 |
+
model_path = hf_hub_download(
|
| 26 |
repo_id="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 27 |
filename="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
| 28 |
+
local_dir="/app/models",
|
| 29 |
token=os.getenv("HF_TOKEN")
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Load TinyLlama model
|
| 33 |
+
llm = Llama(
|
| 34 |
+
model_path=model_path,
|
| 35 |
+
n_ctx=2048,
|
| 36 |
+
n_threads=4 # adjust depending on CPU cores
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# FastAPI app
|
| 40 |
+
app = FastAPI()
|
| 41 |
+
|
| 42 |
+
# Allow Netlify frontend to access the backend
|
| 43 |
+
app.add_middleware(
|
| 44 |
+
CORSMiddleware,
|
| 45 |
+
allow_origins=["*"], # or specify your Netlify URL for more security
|
| 46 |
+
allow_credentials=True,
|
| 47 |
+
allow_methods=["*"],
|
| 48 |
+
allow_headers=["*"],
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
class ChatRequest(BaseModel):
|
| 52 |
+
question: str
|
| 53 |
+
|
| 54 |
+
@app.post("/chat")
|
| 55 |
+
def chat(request: ChatRequest):
|
| 56 |
+
question = request.question.strip()
|
| 57 |
+
if not question:
|
| 58 |
+
return {"response": "Please ask a question."}
|
| 59 |
+
|
| 60 |
+
# Embed the user's question
|
| 61 |
+
q_embedding = embedder.encode([question])[0]
|
| 62 |
+
|
| 63 |
+
# Find top 3 most similar chunks
|
| 64 |
+
similarities = cosine_similarity([q_embedding], chunk_embeddings)[0]
|
| 65 |
+
top_indices = similarities.argsort()[-3:][::-1]
|
| 66 |
+
retrieved = "\n\n".join(chunk_texts[i] for i in top_indices)
|
| 67 |
+
|
| 68 |
+
# Build the prompt
|
| 69 |
+
prompt = (
|
| 70 |
+
f"Context:\n{retrieved}\n\n"
|
| 71 |
+
f"User: {question}\n"
|
| 72 |
+
f"Assistant:"
|
| 73 |
)
|
| 74 |
|
| 75 |
+
# Generate a response from the model
|
| 76 |
+
output = llm(prompt, max_tokens=256)
|
| 77 |
+
reply = output["choices"][0]["text"].strip()
|
| 78 |
|
| 79 |
+
return {"response": reply}
|
|
|
|
|
|