Upload 6 files
Browse files- Dockerfile +30 -10
- batcher.py +29 -0
- bridge.py +73 -0
- engine.py +100 -0
- main.py +94 -0
- setup_model.sh +2 -1
Dockerfile
CHANGED
|
@@ -1,27 +1,47 @@
|
|
|
|
|
| 1 |
FROM python:3.10-slim
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
-
# Install
|
| 6 |
RUN apt-get update && apt-get install -y \
|
| 7 |
libopenblas-dev \
|
| 8 |
-
libgomp1 \
|
| 9 |
-
wget \
|
| 10 |
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
https://huggingface.co/Luigi/llama-cpp-python-wheels-hf-spaces-free-cpu/resolve/main/llama_cpp_python-0.3.22-cp310-cp310-linux_x86_64.whl
|
| 15 |
|
| 16 |
-
#
|
| 17 |
COPY requirements.txt .
|
| 18 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
| 19 |
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
| 21 |
COPY . .
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
EXPOSE 8000
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
| 1 |
+
# Use a lightweight Python base
|
| 2 |
FROM python:3.10-slim
|
| 3 |
|
| 4 |
WORKDIR /app
|
| 5 |
|
| 6 |
+
# Install system dependencies
|
| 7 |
RUN apt-get update && apt-get install -y \
|
| 8 |
libopenblas-dev \
|
|
|
|
|
|
|
| 9 |
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
|
| 11 |
+
|
| 12 |
+
# Install llama-cpp-python from PREBUILT wheel (3 seconds vs 10+ minutes)
|
| 13 |
+
RUN pip install \
|
| 14 |
https://huggingface.co/Luigi/llama-cpp-python-wheels-hf-spaces-free-cpu/resolve/main/llama_cpp_python-0.3.22-cp310-cp310-linux_x86_64.whl
|
| 15 |
|
| 16 |
+
# Copy requirements first for cache
|
| 17 |
COPY requirements.txt .
|
|
|
|
| 18 |
|
| 19 |
+
# Install remaining requirements
|
| 20 |
+
RUN pip install -r requirements.txt
|
| 21 |
+
|
| 22 |
+
# Copy project files
|
| 23 |
COPY . .
|
| 24 |
|
| 25 |
+
# Setup environment variables for compilation
|
| 26 |
+
# We need to find where pip installed llama-cpp-python to link against it
|
| 27 |
+
# In docker, it's usually /usr/local/lib/python3.12/site-packages
|
| 28 |
+
# ENV SITE_PACKAGES=/usr/local/lib/python3.12/site-packages
|
| 29 |
+
|
| 30 |
+
# Compile the engine
|
| 31 |
+
# WORKDIR /app/engine
|
| 32 |
+
# RUN g++ -O2 -shared -fPIC -o libbatch.so batch_server.cpp \
|
| 33 |
+
# -I"${SITE_PACKAGES}/include" \
|
| 34 |
+
# -L"${SITE_PACKAGES}/llama_cpp/lib" \
|
| 35 |
+
# -lllama -Wl,-rpath,"${SITE_PACKAGES}/llama_cpp/lib"
|
| 36 |
|
| 37 |
+
# Setup Model (Download during build or mount volume?
|
| 38 |
+
# Best practice: Download in build if small, or use script at runtime.
|
| 39 |
+
# Here we'll rely on the user mounting the model or running the setup script.
|
| 40 |
+
# But for "Tunnel Code Optimized", let's assume valid model is present or downloaded.
|
| 41 |
+
# We'll expose the setup script.)
|
| 42 |
+
|
| 43 |
+
WORKDIR /app
|
| 44 |
EXPOSE 8000
|
| 45 |
|
| 46 |
+
# Start command
|
| 47 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
|
batcher.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
|
| 3 |
+
class BatchScheduler:
|
| 4 |
+
def __init__(self, max_batch=8, max_wait_ms=30):
|
| 5 |
+
self.queue = []
|
| 6 |
+
self.max_batch = max_batch
|
| 7 |
+
self.max_wait_ms = max_wait_ms
|
| 8 |
+
self.lock = asyncio.Lock()
|
| 9 |
+
|
| 10 |
+
async def add(self, prompt: str):
|
| 11 |
+
# Create a queue for streaming tokens
|
| 12 |
+
queue = asyncio.Queue()
|
| 13 |
+
async with self.lock:
|
| 14 |
+
self.queue.append((prompt, queue))
|
| 15 |
+
return queue
|
| 16 |
+
|
| 17 |
+
async def get_batch(self):
|
| 18 |
+
if not self.queue:
|
| 19 |
+
return None
|
| 20 |
+
|
| 21 |
+
# Artificial wait to accumulate requests
|
| 22 |
+
await asyncio.sleep(self.max_wait_ms / 1000)
|
| 23 |
+
|
| 24 |
+
async with self.lock:
|
| 25 |
+
# Take up to max_batch items from the queue
|
| 26 |
+
batch = self.queue[:self.max_batch]
|
| 27 |
+
self.queue = self.queue[self.max_batch:]
|
| 28 |
+
|
| 29 |
+
return batch if batch else None
|
bridge.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ctypes
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# Load the shared library
|
| 5 |
+
LIB_PATH = os.path.abspath("../engine/libbatch.so")
|
| 6 |
+
if not os.path.exists(LIB_PATH):
|
| 7 |
+
raise FileNotFoundError(f"Shared library not found at: {LIB_PATH}. Did you compile the engine?")
|
| 8 |
+
lib = ctypes.CDLL(LIB_PATH)
|
| 9 |
+
|
| 10 |
+
# Define function signatures
|
| 11 |
+
lib.init_model.argtypes = [ctypes.c_char_p]
|
| 12 |
+
lib.init_model.restype = ctypes.c_bool
|
| 13 |
+
|
| 14 |
+
# Define function signatures for streaming
|
| 15 |
+
lib.start_batch.argtypes = [
|
| 16 |
+
ctypes.POINTER(ctypes.c_char_p), # prompts
|
| 17 |
+
ctypes.c_int, # count
|
| 18 |
+
ctypes.c_int # max_tokens
|
| 19 |
+
]
|
| 20 |
+
lib.start_batch.restype = None
|
| 21 |
+
|
| 22 |
+
lib.decode_step.argtypes = [
|
| 23 |
+
ctypes.POINTER(ctypes.c_char_p) # results
|
| 24 |
+
]
|
| 25 |
+
lib.decode_step.restype = ctypes.c_bool
|
| 26 |
+
|
| 27 |
+
# Load template
|
| 28 |
+
with open("../model/template.txt", "r") as f:
|
| 29 |
+
TEMPLATE = f.read()
|
| 30 |
+
|
| 31 |
+
def format_prompt(prompt: str) -> str:
|
| 32 |
+
return TEMPLATE.replace("{{prompt}}", prompt)
|
| 33 |
+
|
| 34 |
+
# Initialize the model
|
| 35 |
+
MODEL_PATH = os.path.abspath("../model/model.gguf").encode('utf-8')
|
| 36 |
+
if not lib.init_model(MODEL_PATH):
|
| 37 |
+
print(f"Failed to initialize model at {MODEL_PATH}")
|
| 38 |
+
|
| 39 |
+
def stream_batch(prompts):
|
| 40 |
+
count = len(prompts)
|
| 41 |
+
|
| 42 |
+
# Apply Ollama-style templates
|
| 43 |
+
formatted_prompts = [format_prompt(p) for p in prompts]
|
| 44 |
+
|
| 45 |
+
c_prompts = (ctypes.c_char_p * count)(*[p.encode('utf-8') for p in formatted_prompts])
|
| 46 |
+
c_results = (ctypes.c_char_p * count)()
|
| 47 |
+
|
| 48 |
+
# 1. Start Batch (Prefill)
|
| 49 |
+
lib.start_batch(c_prompts, count, 256)
|
| 50 |
+
|
| 51 |
+
# 2. Decode Loop
|
| 52 |
+
while True:
|
| 53 |
+
# Run one step
|
| 54 |
+
active = lib.decode_step(c_results)
|
| 55 |
+
|
| 56 |
+
# Collect results for this step
|
| 57 |
+
step_output = []
|
| 58 |
+
for i in range(count):
|
| 59 |
+
res = c_results[i]
|
| 60 |
+
if res:
|
| 61 |
+
text = res.decode('utf-8')
|
| 62 |
+
step_output.append(text)
|
| 63 |
+
# libc.free(res) # Ideally free, but for now we rely on OS cleanup or leak small amount in this demo
|
| 64 |
+
else:
|
| 65 |
+
step_output.append(None)
|
| 66 |
+
|
| 67 |
+
yield step_output
|
| 68 |
+
|
| 69 |
+
if not active:
|
| 70 |
+
break
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
engine.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
from typing import List, AsyncGenerator, Dict
|
| 3 |
+
from llama_cpp import Llama, LlamaGrammar
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.getLogger(__name__)
|
| 7 |
+
|
| 8 |
+
class BatchInferenceEngine:
|
| 9 |
+
"""
|
| 10 |
+
Pure Python batch inference engine using llama-cpp-python.
|
| 11 |
+
Loads model once, handles multiple concurrent requests efficiently.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def __init__(self, model_path: str, n_ctx: int = 4096, n_threads: int = 4):
|
| 15 |
+
self.model_path = model_path
|
| 16 |
+
self.n_ctx = n_ctx
|
| 17 |
+
self.n_threads = n_threads
|
| 18 |
+
self._model: Llama = None
|
| 19 |
+
self._lock = asyncio.Lock()
|
| 20 |
+
|
| 21 |
+
def load(self):
|
| 22 |
+
"""Load model once at startup"""
|
| 23 |
+
logger.info(f"Loading model from {self.model_path}")
|
| 24 |
+
self._model = Llama(
|
| 25 |
+
model_path=self.model_path,
|
| 26 |
+
n_ctx=self.n_ctx,
|
| 27 |
+
n_threads=self.n_threads,
|
| 28 |
+
n_batch=512,
|
| 29 |
+
verbose=False
|
| 30 |
+
)
|
| 31 |
+
logger.info("Model loaded successfully")
|
| 32 |
+
|
| 33 |
+
async def generate_stream(
|
| 34 |
+
self,
|
| 35 |
+
prompt: str,
|
| 36 |
+
max_tokens: int = 256,
|
| 37 |
+
temperature: float = 0.7,
|
| 38 |
+
stop: List[str] = None
|
| 39 |
+
) -> AsyncGenerator[str, None]:
|
| 40 |
+
"""
|
| 41 |
+
Async streaming generator for single request.
|
| 42 |
+
Uses thread pool to run sync llama-cpp in background.
|
| 43 |
+
"""
|
| 44 |
+
if self._model is None:
|
| 45 |
+
raise RuntimeError("Model not loaded")
|
| 46 |
+
|
| 47 |
+
# Run blocking llama-cpp call in thread pool
|
| 48 |
+
loop = asyncio.get_event_loop()
|
| 49 |
+
|
| 50 |
+
def _generate():
|
| 51 |
+
return self._model.create_completion(
|
| 52 |
+
prompt=prompt,
|
| 53 |
+
max_tokens=max_tokens,
|
| 54 |
+
temperature=temperature,
|
| 55 |
+
stop=stop or [],
|
| 56 |
+
stream=True # Enable streaming
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Get streaming iterator
|
| 60 |
+
stream = await loop.run_in_executor(None, _generate)
|
| 61 |
+
|
| 62 |
+
# Yield tokens as they arrive
|
| 63 |
+
for chunk in stream:
|
| 64 |
+
if "choices" in chunk and len(chunk["choices"]) > 0:
|
| 65 |
+
delta = chunk["choices"][0].get("text", "")
|
| 66 |
+
if delta:
|
| 67 |
+
yield delta
|
| 68 |
+
|
| 69 |
+
async def generate_batch(
|
| 70 |
+
self,
|
| 71 |
+
prompts: List[str],
|
| 72 |
+
max_tokens: int = 256,
|
| 73 |
+
temperature: float = 0.7
|
| 74 |
+
) -> List[str]:
|
| 75 |
+
"""
|
| 76 |
+
Process multiple prompts efficiently.
|
| 77 |
+
On CPU, we process sequentially to avoid contention.
|
| 78 |
+
"""
|
| 79 |
+
results = []
|
| 80 |
+
for prompt in prompts:
|
| 81 |
+
chunks = []
|
| 82 |
+
async for token in self.generate_stream(prompt, max_tokens, temperature):
|
| 83 |
+
chunks.append(token)
|
| 84 |
+
results.append("".join(chunks))
|
| 85 |
+
return results
|
| 86 |
+
|
| 87 |
+
# Global singleton instance
|
| 88 |
+
_engine: BatchInferenceEngine = None
|
| 89 |
+
|
| 90 |
+
def get_engine() -> BatchInferenceEngine:
|
| 91 |
+
global _engine
|
| 92 |
+
if _engine is None:
|
| 93 |
+
raise RuntimeError("Engine not initialized")
|
| 94 |
+
return _engine
|
| 95 |
+
|
| 96 |
+
def init_engine(model_path: str, **kwargs):
|
| 97 |
+
global _engine
|
| 98 |
+
_engine = BatchInferenceEngine(model_path, **kwargs)
|
| 99 |
+
_engine.load()
|
| 100 |
+
return _engine
|
main.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import asyncio
|
| 3 |
+
from contextlib import asynccontextmanager
|
| 4 |
+
from fastapi import FastAPI, HTTPException
|
| 5 |
+
from fastapi.responses import StreamingResponse
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
from typing import List, Optional
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
from engine import init_engine, get_engine
|
| 11 |
+
|
| 12 |
+
logging.basicConfig(level=logging.INFO)
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
# Configuration
|
| 16 |
+
MODEL_PATH = os.getenv("MODEL_PATH", "model/model.gguf")
|
| 17 |
+
MODEL_URL = os.getenv("MODEL_URL", "https://huggingface.co/prithivMLmods/Nanbeige4.1-3B-f32-GGUF/resolve/main/Nanbeige4.1-3B.Q8_0.gguf")
|
| 18 |
+
|
| 19 |
+
class GenerateRequest(BaseModel):
|
| 20 |
+
prompt: str
|
| 21 |
+
max_tokens: int = 256
|
| 22 |
+
temperature: float = 0.7
|
| 23 |
+
stream: bool = True
|
| 24 |
+
|
| 25 |
+
class BatchRequest(BaseModel):
|
| 26 |
+
prompts: List[str]
|
| 27 |
+
max_tokens: int = 256
|
| 28 |
+
temperature: float = 0.7
|
| 29 |
+
|
| 30 |
+
def download_model():
|
| 31 |
+
"""Download model if not exists"""
|
| 32 |
+
if not os.path.exists(MODEL_PATH):
|
| 33 |
+
os.makedirs(os.path.dirname(MODEL_PATH), exist_ok=True)
|
| 34 |
+
logger.info(f"Downloading model from {MODEL_URL}")
|
| 35 |
+
import urllib.request
|
| 36 |
+
urllib.request.urlretrieve(MODEL_URL, MODEL_PATH)
|
| 37 |
+
logger.info("Model downloaded")
|
| 38 |
+
|
| 39 |
+
@asynccontextmanager
|
| 40 |
+
async def lifespan(app: FastAPI):
|
| 41 |
+
# Startup
|
| 42 |
+
logger.info("Starting up...")
|
| 43 |
+
download_model()
|
| 44 |
+
init_engine(MODEL_PATH, n_ctx=4096, n_threads=4)
|
| 45 |
+
logger.info("Ready!")
|
| 46 |
+
yield
|
| 47 |
+
# Shutdown
|
| 48 |
+
logger.info("Shutting down...")
|
| 49 |
+
|
| 50 |
+
app = FastAPI(title="Nanbeige LLM API", lifespan=lifespan)
|
| 51 |
+
|
| 52 |
+
@app.post("/generate")
|
| 53 |
+
async def generate(req: GenerateRequest):
|
| 54 |
+
"""Single prompt generation with streaming"""
|
| 55 |
+
engine = get_engine()
|
| 56 |
+
|
| 57 |
+
if req.stream:
|
| 58 |
+
async def stream_generator():
|
| 59 |
+
async for token in engine.generate_stream(
|
| 60 |
+
req.prompt,
|
| 61 |
+
max_tokens=req.max_tokens,
|
| 62 |
+
temperature=req.temperature
|
| 63 |
+
):
|
| 64 |
+
yield token
|
| 65 |
+
|
| 66 |
+
return StreamingResponse(
|
| 67 |
+
stream_generator(),
|
| 68 |
+
media_type="text/plain"
|
| 69 |
+
)
|
| 70 |
+
else:
|
| 71 |
+
# Non-streaming: collect all tokens
|
| 72 |
+
chunks = []
|
| 73 |
+
async for token in engine.generate_stream(
|
| 74 |
+
req.prompt,
|
| 75 |
+
max_tokens=req.max_tokens,
|
| 76 |
+
temperature=req.temperature
|
| 77 |
+
):
|
| 78 |
+
chunks.append(token)
|
| 79 |
+
return {"text": "".join(chunks)}
|
| 80 |
+
|
| 81 |
+
@app.post("/generate_batch")
|
| 82 |
+
async def generate_batch(req: BatchRequest):
|
| 83 |
+
"""Batch generation (multiple prompts)"""
|
| 84 |
+
engine = get_engine()
|
| 85 |
+
results = await engine.generate_batch(
|
| 86 |
+
req.prompts,
|
| 87 |
+
max_tokens=req.max_tokens,
|
| 88 |
+
temperature=req.temperature
|
| 89 |
+
)
|
| 90 |
+
return {"results": results}
|
| 91 |
+
|
| 92 |
+
@app.get("/health")
|
| 93 |
+
async def health():
|
| 94 |
+
return {"status": "ok", "model_loaded": get_engine()._model is not None}
|
setup_model.sh
CHANGED
|
@@ -2,7 +2,8 @@
|
|
| 2 |
set -e
|
| 3 |
|
| 4 |
# Default URL (Nanbeige4.1-3B-f32-GGUF - Q8_0)
|
| 5 |
-
DEFAULT_URL="https://huggingface.co/prithivMLmods/Nanbeige4.1-3B-f32-GGUF/resolve/main/Nanbeige4.1-3B.Q8_0.gguf"
|
|
|
|
| 6 |
MODEL_URL=${1:-$DEFAULT_URL}
|
| 7 |
MODEL_DIR="model"
|
| 8 |
ENGINE_DIR="engine"
|
|
|
|
| 2 |
set -e
|
| 3 |
|
| 4 |
# Default URL (Nanbeige4.1-3B-f32-GGUF - Q8_0)
|
| 5 |
+
# DEFAULT_URL="https://huggingface.co/prithivMLmods/Nanbeige4.1-3B-f32-GGUF/resolve/main/Nanbeige4.1-3B.Q8_0.gguf"
|
| 6 |
+
DEFAULT_URL="https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/blob/main/Phi-3-mini-4k-instruct-q4.gguf"
|
| 7 |
MODEL_URL=${1:-$DEFAULT_URL}
|
| 8 |
MODEL_DIR="model"
|
| 9 |
ENGINE_DIR="engine"
|