Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- Dockerfile +5 -5
- app/main.py +25 -51
- app/model.py +105 -158
- app/prompt.py +2 -10
- app/schemas.py +6 -30
- requirements.txt +2 -4
Dockerfile
CHANGED
|
@@ -1,25 +1,25 @@
|
|
|
|
|
| 1 |
FROM python:3.11-slim
|
| 2 |
|
| 3 |
ENV PYTHONUNBUFFERED=1 \
|
| 4 |
-
CMAKE_ARGS="-DLLAMA_AVX2=ON" \
|
| 5 |
FORCE_CMAKE=1
|
| 6 |
|
| 7 |
-
# System deps
|
| 8 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 9 |
build-essential \
|
| 10 |
cmake \
|
| 11 |
git \
|
|
|
|
| 12 |
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
|
| 14 |
WORKDIR /app
|
| 15 |
|
| 16 |
-
# Install python deps (IMPORTANT)
|
| 17 |
COPY requirements.txt .
|
| 18 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 19 |
|
| 20 |
-
# Copy app
|
| 21 |
COPY app/ ./app/
|
| 22 |
|
| 23 |
EXPOSE 7860
|
| 24 |
|
| 25 |
-
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 1 |
+
# Dockerfile
|
| 2 |
FROM python:3.11-slim
|
| 3 |
|
| 4 |
ENV PYTHONUNBUFFERED=1 \
|
| 5 |
+
CMAKE_ARGS="-DLLAMA_AVX2=ON -DLLAMA_AVX=ON -DLLAMA_FMA=ON" \
|
| 6 |
FORCE_CMAKE=1
|
| 7 |
|
| 8 |
+
# System deps for llama.cpp compilation
|
| 9 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 10 |
build-essential \
|
| 11 |
cmake \
|
| 12 |
git \
|
| 13 |
+
wget \
|
| 14 |
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
|
| 16 |
WORKDIR /app
|
| 17 |
|
|
|
|
| 18 |
COPY requirements.txt .
|
| 19 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 20 |
|
|
|
|
| 21 |
COPY app/ ./app/
|
| 22 |
|
| 23 |
EXPOSE 7860
|
| 24 |
|
| 25 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
app/main.py
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
# app/main.py
|
| 2 |
"""
|
| 3 |
-
FastAPI
|
| 4 |
-
CPU-ONLY optimized for Hugging Face Spaces (Docker).
|
| 5 |
"""
|
| 6 |
|
| 7 |
import asyncio
|
| 8 |
from contextlib import asynccontextmanager
|
| 9 |
|
| 10 |
from fastapi import FastAPI
|
| 11 |
-
from fastapi.responses import StreamingResponse
|
| 12 |
|
| 13 |
from app.model import load_model, generate_stream, generate
|
| 14 |
from app.prompt import build_prompt
|
|
@@ -17,89 +16,64 @@ from app.schemas import GenerationRequest, GenerationResponse
|
|
| 17 |
|
| 18 |
@asynccontextmanager
|
| 19 |
async def lifespan(app: FastAPI):
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
""
|
| 24 |
-
#
|
| 25 |
-
print("
|
| 26 |
-
load_model()
|
| 27 |
-
print("Model loaded successfully on CPU")
|
| 28 |
yield
|
| 29 |
-
# Shutdown: Cleanup
|
| 30 |
print("Shutting down...")
|
| 31 |
|
| 32 |
|
| 33 |
app = FastAPI(
|
| 34 |
-
title="
|
| 35 |
-
description="
|
| 36 |
-
version="
|
| 37 |
lifespan=lifespan
|
| 38 |
)
|
| 39 |
|
| 40 |
|
| 41 |
@app.get("/")
|
| 42 |
async def health_check():
|
| 43 |
-
"""Health check endpoint."""
|
| 44 |
return {
|
| 45 |
-
"status": "ok",
|
| 46 |
-
"model": "
|
|
|
|
| 47 |
"device": "cpu",
|
| 48 |
-
"
|
| 49 |
}
|
| 50 |
|
| 51 |
|
| 52 |
@app.post("/generate")
|
| 53 |
async def generate_text(request: GenerationRequest):
|
| 54 |
-
"""
|
| 55 |
-
Generate text from prompt.
|
| 56 |
-
Supports both streaming and non-streaming responses.
|
| 57 |
-
"""
|
| 58 |
-
# Build final prompt with system instructions
|
| 59 |
final_prompt = build_prompt(request.prompt)
|
| 60 |
|
| 61 |
if request.stream:
|
| 62 |
-
# Streaming response
|
| 63 |
async def stream_generator():
|
| 64 |
-
# Run sync generator in thread pool to not block event loop
|
| 65 |
loop = asyncio.get_event_loop()
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
return generate_stream(
|
| 70 |
final_prompt,
|
| 71 |
temperature=request.temperature,
|
| 72 |
max_tokens=request.max_tokens
|
| 73 |
-
)
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
sync_gen = await loop.run_in_executor(None, sync_generator)
|
| 77 |
-
|
| 78 |
-
# Iterate through chunks
|
| 79 |
-
for chunk in sync_gen:
|
| 80 |
if chunk:
|
| 81 |
-
# SSE format
|
| 82 |
yield f"data: {chunk}\n\n"
|
| 83 |
-
|
| 84 |
yield "data: [DONE]\n\n"
|
| 85 |
|
| 86 |
return StreamingResponse(
|
| 87 |
stream_generator(),
|
| 88 |
-
media_type="text/event-stream"
|
| 89 |
-
headers={
|
| 90 |
-
"Cache-Control": "no-cache",
|
| 91 |
-
"Connection": "keep-alive",
|
| 92 |
-
}
|
| 93 |
)
|
| 94 |
else:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
lambda: generate(
|
| 100 |
-
final_prompt,
|
| 101 |
-
temperature=request.temperature,
|
| 102 |
-
max_tokens=request.max_tokens
|
| 103 |
-
)
|
| 104 |
)
|
| 105 |
return GenerationResponse(text=result)
|
|
|
|
| 1 |
# app/main.py
|
| 2 |
"""
|
| 3 |
+
FastAPI app with llama.cpp backend.
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import asyncio
|
| 7 |
from contextlib import asynccontextmanager
|
| 8 |
|
| 9 |
from fastapi import FastAPI
|
| 10 |
+
from fastapi.responses import StreamingResponse
|
| 11 |
|
| 12 |
from app.model import load_model, generate_stream, generate
|
| 13 |
from app.prompt import build_prompt
|
|
|
|
| 16 |
|
| 17 |
@asynccontextmanager
|
| 18 |
async def lifespan(app: FastAPI):
|
| 19 |
+
"""Startup: Download and load model."""
|
| 20 |
+
print("=" * 50)
|
| 21 |
+
print("Starting up - Loading GGUF model...")
|
| 22 |
+
print("=" * 50)
|
| 23 |
+
load_model() # Pre-load on startup
|
| 24 |
+
print("Ready for requests!")
|
|
|
|
|
|
|
| 25 |
yield
|
|
|
|
| 26 |
print("Shutting down...")
|
| 27 |
|
| 28 |
|
| 29 |
app = FastAPI(
|
| 30 |
+
title="Nanbeige3B-GGUF API",
|
| 31 |
+
description="Fast CPU inference with llama.cpp",
|
| 32 |
+
version="2.0.0",
|
| 33 |
lifespan=lifespan
|
| 34 |
)
|
| 35 |
|
| 36 |
|
| 37 |
@app.get("/")
|
| 38 |
async def health_check():
|
|
|
|
| 39 |
return {
|
| 40 |
+
"status": "ok",
|
| 41 |
+
"model": "Nanbeige-3B-GGUF",
|
| 42 |
+
"backend": "llama.cpp",
|
| 43 |
"device": "cpu",
|
| 44 |
+
"optimized": True
|
| 45 |
}
|
| 46 |
|
| 47 |
|
| 48 |
@app.post("/generate")
|
| 49 |
async def generate_text(request: GenerationRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
final_prompt = build_prompt(request.prompt)
|
| 51 |
|
| 52 |
if request.stream:
|
|
|
|
| 53 |
async def stream_generator():
|
|
|
|
| 54 |
loop = asyncio.get_event_loop()
|
| 55 |
|
| 56 |
+
def sync_gen():
|
| 57 |
+
for chunk in generate_stream(
|
|
|
|
| 58 |
final_prompt,
|
| 59 |
temperature=request.temperature,
|
| 60 |
max_tokens=request.max_tokens
|
| 61 |
+
):
|
| 62 |
+
yield chunk
|
| 63 |
|
| 64 |
+
for chunk in sync_gen():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
if chunk:
|
|
|
|
| 66 |
yield f"data: {chunk}\n\n"
|
|
|
|
| 67 |
yield "data: [DONE]\n\n"
|
| 68 |
|
| 69 |
return StreamingResponse(
|
| 70 |
stream_generator(),
|
| 71 |
+
media_type="text/event-stream"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
)
|
| 73 |
else:
|
| 74 |
+
result = generate(
|
| 75 |
+
final_prompt,
|
| 76 |
+
temperature=request.temperature,
|
| 77 |
+
max_tokens=request.max_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
return GenerationResponse(text=result)
|
app/model.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
# app/model.py
|
| 2 |
"""
|
| 3 |
-
CPU-optimized model loading
|
| 4 |
-
2-4x faster
|
| 5 |
"""
|
| 6 |
|
| 7 |
import gc
|
|
@@ -9,188 +9,135 @@ import os
|
|
| 9 |
from typing import Generator, Optional
|
| 10 |
from pathlib import Path
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
from llama_cpp import Llama
|
| 15 |
-
LLAMA_AVAILABLE = True
|
| 16 |
-
except ImportError:
|
| 17 |
-
LLAMA_AVAILABLE = False
|
| 18 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 19 |
|
| 20 |
# Global singleton
|
| 21 |
-
_llama_model = None
|
| 22 |
-
_transformer_model = None
|
| 23 |
-
_tokenizer = None
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
-
|
| 29 |
-
|
| 30 |
"""
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
-
def load_model():
|
| 41 |
"""
|
| 42 |
-
Load model with llama.cpp
|
| 43 |
-
|
| 44 |
"""
|
| 45 |
-
global _llama_model
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
return
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
print("Loading GGUF model with llama.cpp (optimized)...")
|
| 56 |
-
_llama_model = Llama(
|
| 57 |
-
model_path=model_path,
|
| 58 |
-
n_ctx=2048,
|
| 59 |
-
n_threads=4, # CPU threads
|
| 60 |
-
n_batch=512,
|
| 61 |
-
verbose=False
|
| 62 |
-
)
|
| 63 |
-
print("Model loaded with llama.cpp")
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
if _tokenizer.pad_token is None:
|
| 80 |
-
_tokenizer.pad_token = _tokenizer.eos_token
|
| 81 |
-
|
| 82 |
-
_transformer_model = AutoModelForCausalLM.from_pretrained(
|
| 83 |
-
model_name,
|
| 84 |
-
torch_dtype=torch.float32,
|
| 85 |
-
trust_remote_code=True,
|
| 86 |
-
low_cpu_mem_usage=True,
|
| 87 |
-
device_map=None,
|
| 88 |
-
)
|
| 89 |
-
_transformer_model = _transformer_model.to("cpu")
|
| 90 |
-
_transformer_model.eval()
|
| 91 |
-
|
| 92 |
-
# Disable gradients
|
| 93 |
-
for param in _transformer_model.parameters():
|
| 94 |
-
param.requires_grad = False
|
| 95 |
-
|
| 96 |
-
print("Model loaded with transformers")
|
| 97 |
|
| 98 |
gc.collect()
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
-
def generate_stream(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
"""
|
| 103 |
-
|
| 104 |
"""
|
| 105 |
-
load_model()
|
| 106 |
|
| 107 |
-
# llama.cpp
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
if text:
|
| 122 |
-
yield text
|
| 123 |
|
| 124 |
-
# Transformers fallback (SLOW)
|
| 125 |
-
else:
|
| 126 |
-
import torch
|
| 127 |
-
from threading import Thread
|
| 128 |
-
from transformers import TextIteratorStreamer
|
| 129 |
-
|
| 130 |
-
inputs = _tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
| 131 |
-
input_ids = inputs.input_ids
|
| 132 |
-
|
| 133 |
-
streamer = TextIteratorStreamer(
|
| 134 |
-
_tokenizer,
|
| 135 |
-
skip_prompt=True,
|
| 136 |
-
skip_special_tokens=True
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
generation_kwargs = {
|
| 140 |
-
"input_ids": input_ids,
|
| 141 |
-
"max_new_tokens": max_tokens,
|
| 142 |
-
"temperature": temperature,
|
| 143 |
-
"top_p": 0.95,
|
| 144 |
-
"do_sample": True,
|
| 145 |
-
"pad_token_id": _tokenizer.pad_token_id,
|
| 146 |
-
"eos_token_id": _tokenizer.eos_token_id,
|
| 147 |
-
"streamer": streamer,
|
| 148 |
-
"use_cache": True,
|
| 149 |
-
}
|
| 150 |
-
|
| 151 |
-
thread = Thread(target=_transformer_model.generate, kwargs=generation_kwargs)
|
| 152 |
-
thread.start()
|
| 153 |
-
|
| 154 |
-
for text in streamer:
|
| 155 |
-
if text:
|
| 156 |
-
yield text
|
| 157 |
-
|
| 158 |
-
thread.join()
|
| 159 |
-
|
| 160 |
gc.collect()
|
| 161 |
|
| 162 |
|
| 163 |
-
def generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
"""
|
| 165 |
-
Non-streaming generation.
|
| 166 |
"""
|
| 167 |
-
load_model()
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
)
|
| 177 |
-
return output["choices"][0]["text"]
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
inputs = _tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
| 182 |
-
|
| 183 |
-
with torch.no_grad():
|
| 184 |
-
output_ids = _transformer_model.generate(
|
| 185 |
-
inputs.input_ids,
|
| 186 |
-
max_new_tokens=max_tokens,
|
| 187 |
-
temperature=temperature,
|
| 188 |
-
top_p=0.95,
|
| 189 |
-
do_sample=True,
|
| 190 |
-
pad_token_id=_tokenizer.pad_token_id,
|
| 191 |
-
eos_token_id=_tokenizer.eos_token_id,
|
| 192 |
-
use_cache=True,
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
new_tokens = output_ids[0][len(inputs.input_ids[0]):]
|
| 196 |
-
return _tokenizer.decode(new_tokens, skip_special_tokens=True)
|
|
|
|
| 1 |
+
# app/model.py
|
| 2 |
"""
|
| 3 |
+
CPU-optimized model loading with automatic GGUF download.
|
| 4 |
+
Uses llama.cpp for 2-4x faster inference on CPU.
|
| 5 |
"""
|
| 6 |
|
| 7 |
import gc
|
|
|
|
| 9 |
from typing import Generator, Optional
|
| 10 |
from pathlib import Path
|
| 11 |
|
| 12 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
| 13 |
+
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Global singleton
|
| 16 |
+
_llama_model: Optional[Llama] = None
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Model configuration
|
| 19 |
+
MODEL_REPO = "TheBloke/Nanbeige-3B-GGUF" # GGUF version available hai
|
| 20 |
+
MODEL_FILE = "nanbeige-3b.Q4_K_M.gguf" # 4-bit quantized, balanced quality/speed
|
| 21 |
+
# Agar yeh nahi chale toh: "nanbeige-3b.Q4_0.gguf" (faster, less quality)
|
| 22 |
+
# Ya: "nanbeige-3b.Q5_K_M.gguf" (better quality, slower)
|
| 23 |
|
| 24 |
+
CACHE_DIR = "/tmp/models"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def download_gguf_model() -> str:
|
| 28 |
"""
|
| 29 |
+
Download GGUF model from Hugging Face if not exists.
|
| 30 |
+
Returns local path to model file.
|
| 31 |
"""
|
| 32 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 33 |
+
local_path = os.path.join(CACHE_DIR, MODEL_FILE)
|
| 34 |
+
|
| 35 |
+
# Agar already downloaded hai
|
| 36 |
+
if os.path.exists(local_path):
|
| 37 |
+
print(f"GGUF model already exists: {local_path}")
|
| 38 |
+
return local_path
|
| 39 |
+
|
| 40 |
+
print(f"Downloading GGUF model: {MODEL_FILE}")
|
| 41 |
+
print(f"From: {MODEL_REPO}")
|
| 42 |
+
print("This may take a few minutes...")
|
| 43 |
|
| 44 |
+
try:
|
| 45 |
+
# Download from Hugging Face
|
| 46 |
+
downloaded_path = hf_hub_download(
|
| 47 |
+
repo_id=MODEL_REPO,
|
| 48 |
+
filename=MODEL_FILE,
|
| 49 |
+
cache_dir=CACHE_DIR,
|
| 50 |
+
local_dir=CACHE_DIR,
|
| 51 |
+
local_dir_use_symlinks=False
|
| 52 |
+
)
|
| 53 |
+
print(f"Model downloaded to: {downloaded_path}")
|
| 54 |
+
return downloaded_path
|
| 55 |
+
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"Error downloading GGUF model: {e}")
|
| 58 |
+
print("Falling back to smaller model or available alternative...")
|
| 59 |
+
raise
|
| 60 |
|
| 61 |
|
| 62 |
+
def load_model() -> Llama:
|
| 63 |
"""
|
| 64 |
+
Load GGUF model with llama.cpp (optimized for CPU).
|
| 65 |
+
Downloads automatically if not present.
|
| 66 |
"""
|
| 67 |
+
global _llama_model
|
| 68 |
|
| 69 |
+
if _llama_model is not None:
|
| 70 |
+
return _llama_model
|
|
|
|
| 71 |
|
| 72 |
+
# Download if needed
|
| 73 |
+
model_path = download_gguf_model()
|
| 74 |
|
| 75 |
+
print("Loading GGUF model with llama.cpp (CPU optimized)...")
|
| 76 |
+
print("This is 2-4x faster than transformers!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
# CPU optimizations
|
| 79 |
+
_llama_model = Llama(
|
| 80 |
+
model_path=model_path,
|
| 81 |
+
n_ctx=2048, # Context window
|
| 82 |
+
n_threads=4, # CPU threads (tune based on your CPU)
|
| 83 |
+
n_batch=512, # Batch size for prompt processing
|
| 84 |
+
verbose=False, # Quiet mode
|
| 85 |
+
use_mmap=True, # Memory mapping for faster loading
|
| 86 |
+
use_mlock=False, # Don't lock memory (HF Spaces constraint)
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
print(f"Model loaded successfully!")
|
| 90 |
+
print(f"Threads: 4 | Context: 2048 | Quantization: Q4_K_M")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
gc.collect()
|
| 93 |
+
return _llama_model
|
| 94 |
|
| 95 |
|
| 96 |
+
def generate_stream(
|
| 97 |
+
prompt: str,
|
| 98 |
+
temperature: float = 0.7,
|
| 99 |
+
max_tokens: int = 200
|
| 100 |
+
) -> Generator[str, None, None]:
|
| 101 |
"""
|
| 102 |
+
Streaming generation with llama.cpp (FAST).
|
| 103 |
"""
|
| 104 |
+
model = load_model()
|
| 105 |
|
| 106 |
+
# llama.cpp native streaming - very fast on CPU
|
| 107 |
+
stream = model(
|
| 108 |
+
prompt,
|
| 109 |
+
max_tokens=max_tokens,
|
| 110 |
+
temperature=temperature,
|
| 111 |
+
top_p=0.95,
|
| 112 |
+
stream=True,
|
| 113 |
+
stop=["</s>", "User:", "Human:", "Assistant:"]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
for output in stream:
|
| 117 |
+
text = output["choices"][0]["text"]
|
| 118 |
+
if text:
|
| 119 |
+
yield text
|
|
|
|
|
|
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
gc.collect()
|
| 122 |
|
| 123 |
|
| 124 |
+
def generate(
|
| 125 |
+
prompt: str,
|
| 126 |
+
temperature: float = 0.7,
|
| 127 |
+
max_tokens: int = 200
|
| 128 |
+
) -> str:
|
| 129 |
"""
|
| 130 |
+
Non-streaming generation with llama.cpp.
|
| 131 |
"""
|
| 132 |
+
model = load_model()
|
| 133 |
|
| 134 |
+
output = model(
|
| 135 |
+
prompt,
|
| 136 |
+
max_tokens=max_tokens,
|
| 137 |
+
temperature=temperature,
|
| 138 |
+
top_p=0.95,
|
| 139 |
+
stop=["</s>", "User:", "Human:", "Assistant:"]
|
| 140 |
+
)
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
gc.collect()
|
| 143 |
+
return output["choices"][0]["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/prompt.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# app/prompt.py
|
| 2 |
"""
|
| 3 |
-
Prompt building utilities
|
| 4 |
"""
|
| 5 |
|
| 6 |
SYSTEM_PROMPT = """Tu ek helpful assistant hai. Hamesha concise aur accurate jawab de.
|
|
@@ -11,13 +11,5 @@ SYSTEM_PROMPT = """Tu ek helpful assistant hai. Hamesha concise aur accurate jaw
|
|
| 11 |
|
| 12 |
|
| 13 |
def build_prompt(user_input: str) -> str:
|
| 14 |
-
"""
|
| 15 |
-
Build the final prompt by combining system prompt with user input.
|
| 16 |
-
|
| 17 |
-
Args:
|
| 18 |
-
user_input: Raw user query/input
|
| 19 |
-
|
| 20 |
-
Returns:
|
| 21 |
-
Formatted prompt string ready for model inference
|
| 22 |
-
"""
|
| 23 |
return f"{SYSTEM_PROMPT}\n\nUser: {user_input}\nAssistant:"
|
|
|
|
| 1 |
# app/prompt.py
|
| 2 |
"""
|
| 3 |
+
Prompt building utilities.
|
| 4 |
"""
|
| 5 |
|
| 6 |
SYSTEM_PROMPT = """Tu ek helpful assistant hai. Hamesha concise aur accurate jawab de.
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def build_prompt(user_input: str) -> str:
|
| 14 |
+
"""Build final prompt with system instructions."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
return f"{SYSTEM_PROMPT}\n\nUser: {user_input}\nAssistant:"
|
app/schemas.py
CHANGED
|
@@ -1,41 +1,17 @@
|
|
| 1 |
# app/schemas.py
|
| 2 |
"""
|
| 3 |
-
Pydantic schemas
|
| 4 |
"""
|
| 5 |
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
|
| 8 |
|
| 9 |
class GenerationRequest(BaseModel):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
min_length=1,
|
| 15 |
-
description="Input prompt text"
|
| 16 |
-
)
|
| 17 |
-
temperature: float = Field(
|
| 18 |
-
default=0.7,
|
| 19 |
-
ge=0.0,
|
| 20 |
-
le=2.0,
|
| 21 |
-
description="Sampling temperature"
|
| 22 |
-
)
|
| 23 |
-
max_tokens: int = Field(
|
| 24 |
-
default=200,
|
| 25 |
-
ge=1,
|
| 26 |
-
le=512,
|
| 27 |
-
description="Maximum tokens to generate"
|
| 28 |
-
)
|
| 29 |
-
stream: bool = Field(
|
| 30 |
-
default=True,
|
| 31 |
-
description="Whether to stream the response"
|
| 32 |
-
)
|
| 33 |
|
| 34 |
|
| 35 |
class GenerationResponse(BaseModel):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
text: str = Field(
|
| 39 |
-
...,
|
| 40 |
-
description="Generated text response"
|
| 41 |
-
)
|
|
|
|
| 1 |
# app/schemas.py
|
| 2 |
"""
|
| 3 |
+
Pydantic schemas.
|
| 4 |
"""
|
| 5 |
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
|
| 8 |
|
| 9 |
class GenerationRequest(BaseModel):
|
| 10 |
+
prompt: str = Field(..., min_length=1)
|
| 11 |
+
temperature: float = Field(default=0.7, ge=0.0, le=2.0)
|
| 12 |
+
max_tokens: int = Field(default=200, ge=1, le=1024)
|
| 13 |
+
stream: bool = Field(default=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
class GenerationResponse(BaseModel):
|
| 17 |
+
text: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -2,9 +2,7 @@
|
|
| 2 |
fastapi==0.115.0
|
| 3 |
uvicorn[standard]==0.32.0
|
| 4 |
pydantic==2.9.0
|
| 5 |
-
|
| 6 |
-
torch==2.5.0
|
| 7 |
-
accelerate==1.0.0
|
| 8 |
-
sentencepiece==0.2.0
|
| 9 |
huggingface-hub==0.26.0
|
|
|
|
| 10 |
python-multipart==0.0.12
|
|
|
|
| 2 |
fastapi==0.115.0
|
| 3 |
uvicorn[standard]==0.32.0
|
| 4 |
pydantic==2.9.0
|
| 5 |
+
llama-cpp-python==0.3.2
|
|
|
|
|
|
|
|
|
|
| 6 |
huggingface-hub==0.26.0
|
| 7 |
+
requests==2.32.0
|
| 8 |
python-multipart==0.0.12
|