Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- Dockerfile +33 -0
- app/main.py +89 -0
- app/model.py +199 -0
- app/prompt.py +23 -0
- app/schemas.py +41 -0
- requirements.txt +11 -0
- run.sh +12 -0
Dockerfile
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dockerfile
|
| 2 |
+
FROM python:3.11-slim
|
| 3 |
+
|
| 4 |
+
# Set environment variables for Hugging Face cache optimization
|
| 5 |
+
ENV PYTHONUNBUFFERED=1 \
|
| 6 |
+
PYTHONDONTWRITEBYTECODE=1 \
|
| 7 |
+
HF_HOME=/tmp/.huggingface \
|
| 8 |
+
TRANSFORMERS_CACHE=/tmp/.cache/huggingface \
|
| 9 |
+
HF_HUB_CACHE=/tmp/.cache/huggingface/hub
|
| 10 |
+
|
| 11 |
+
# Install minimal system dependencies
|
| 12 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 13 |
+
git \
|
| 14 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
+
|
| 16 |
+
# Set working directory
|
| 17 |
+
WORKDIR /app
|
| 18 |
+
|
| 19 |
+
# Copy requirements first for layer caching
|
| 20 |
+
COPY requirements.txt .
|
| 21 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 22 |
+
|
| 23 |
+
# Copy application code
|
| 24 |
+
COPY app/ ./app/
|
| 25 |
+
|
| 26 |
+
# Create cache directories
|
| 27 |
+
RUN mkdir -p /tmp/.cache/huggingface
|
| 28 |
+
|
| 29 |
+
# Expose Hugging Face Spaces default port
|
| 30 |
+
EXPOSE 7860
|
| 31 |
+
|
| 32 |
+
# Run the application
|
| 33 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
app/main.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app/main.py
|
| 2 |
+
"""
|
| 3 |
+
FastAPI application for serving Nanbeige4.1-3B model.
|
| 4 |
+
Optimized for Hugging Face Spaces (CPU, Docker).
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import asyncio
|
| 8 |
+
from contextlib import asynccontextmanager
|
| 9 |
+
|
| 10 |
+
from fastapi import FastAPI
|
| 11 |
+
from fastapi.responses import StreamingResponse, JSONResponse
|
| 12 |
+
|
| 13 |
+
from app.model import load_model, generate_stream, generate
|
| 14 |
+
from app.prompt import build_prompt
|
| 15 |
+
from app.schemas import GenerationRequest, GenerationResponse
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@asynccontextmanager
|
| 19 |
+
async def lifespan(app: FastAPI):
|
| 20 |
+
"""
|
| 21 |
+
Lifespan context manager for startup/shutdown events.
|
| 22 |
+
Loads model on startup to ensure it's ready for requests.
|
| 23 |
+
"""
|
| 24 |
+
# Startup: Load model
|
| 25 |
+
print("Loading model...")
|
| 26 |
+
load_model()
|
| 27 |
+
print("Model loaded successfully")
|
| 28 |
+
yield
|
| 29 |
+
# Shutdown: Cleanup (if needed)
|
| 30 |
+
print("Shutting down...")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
app = FastAPI(
|
| 34 |
+
title="Nanbeige4.1-3B API",
|
| 35 |
+
description="FastAPI wrapper for Nanbeige4.1-3B with streaming support",
|
| 36 |
+
version="1.0.0",
|
| 37 |
+
lifespan=lifespan
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@app.get("/")
|
| 42 |
+
async def health_check():
|
| 43 |
+
"""Health check endpoint."""
|
| 44 |
+
return {"status": "ok", "model": "Nanbeige4.1-3B"}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@app.post("/generate")
|
| 48 |
+
async def generate_text(request: GenerationRequest):
|
| 49 |
+
"""
|
| 50 |
+
Generate text from prompt.
|
| 51 |
+
Supports both streaming and non-streaming responses.
|
| 52 |
+
"""
|
| 53 |
+
# Build final prompt with system instructions
|
| 54 |
+
final_prompt = build_prompt(request.prompt)
|
| 55 |
+
|
| 56 |
+
if request.stream:
|
| 57 |
+
# Streaming response
|
| 58 |
+
async def stream_generator():
|
| 59 |
+
# Run sync generator in thread pool to not block
|
| 60 |
+
loop = asyncio.get_event_loop()
|
| 61 |
+
sync_gen = generate_stream(
|
| 62 |
+
final_prompt,
|
| 63 |
+
temperature=request.temperature,
|
| 64 |
+
max_tokens=request.max_tokens
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
for chunk in sync_gen:
|
| 68 |
+
if chunk:
|
| 69 |
+
# SSE format
|
| 70 |
+
yield f"data: {chunk}\n\n"
|
| 71 |
+
|
| 72 |
+
yield "data: [DONE]\n\n"
|
| 73 |
+
|
| 74 |
+
return StreamingResponse(
|
| 75 |
+
stream_generator(),
|
| 76 |
+
media_type="text/event-stream",
|
| 77 |
+
headers={
|
| 78 |
+
"Cache-Control": "no-cache",
|
| 79 |
+
"Connection": "keep-alive",
|
| 80 |
+
}
|
| 81 |
+
)
|
| 82 |
+
else:
|
| 83 |
+
# Non-streaming response
|
| 84 |
+
result = generate(
|
| 85 |
+
final_prompt,
|
| 86 |
+
temperature=request.temperature,
|
| 87 |
+
max_tokens=request.max_tokens
|
| 88 |
+
)
|
| 89 |
+
return GenerationResponse(text=result)
|
app/model.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app/model.py
|
| 2 |
+
"""
|
| 3 |
+
Model loading and inference utilities for Nanbeige/Nanbeige4.1-3B.
|
| 4 |
+
Implements singleton pattern to ensure model loads only once.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gc
|
| 8 |
+
import os
|
| 9 |
+
from typing import Generator, Optional
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 13 |
+
|
| 14 |
+
# Global singleton instances
|
| 15 |
+
_tokenizer: Optional[AutoTokenizer] = None
|
| 16 |
+
_model: Optional[AutoModelForCausalLM] = None
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_quantization_config() -> Optional[BitsAndBytesConfig]:
|
| 20 |
+
"""
|
| 21 |
+
Configure 4-bit quantization for CPU memory efficiency.
|
| 22 |
+
Returns None if bitsandbytes is not available or on CPU.
|
| 23 |
+
"""
|
| 24 |
+
try:
|
| 25 |
+
# 4-bit quantization config for minimal memory footprint
|
| 26 |
+
return BitsAndBytesConfig(
|
| 27 |
+
load_in_4bit=True,
|
| 28 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 29 |
+
bnb_4bit_quant_type="nf4",
|
| 30 |
+
bnb_4bit_use_double_quant=True,
|
| 31 |
+
)
|
| 32 |
+
except Exception:
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def load_model() -> tuple[AutoTokenizer, AutoModelForCausalLM]:
|
| 37 |
+
"""
|
| 38 |
+
Load tokenizer and model with singleton pattern.
|
| 39 |
+
Loads only on first call, returns cached instances thereafter.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
Tuple of (tokenizer, model)
|
| 43 |
+
"""
|
| 44 |
+
global _tokenizer, _model
|
| 45 |
+
|
| 46 |
+
if _tokenizer is not None and _model is not None:
|
| 47 |
+
return _tokenizer, _model
|
| 48 |
+
|
| 49 |
+
model_name = "Nanbeige/Nanbeige4.1-3B"
|
| 50 |
+
|
| 51 |
+
# Load tokenizer
|
| 52 |
+
_tokenizer = AutoTokenizer.from_pretrained(
|
| 53 |
+
model_name,
|
| 54 |
+
use_fast=False,
|
| 55 |
+
trust_remote_code=True
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Configure model loading for CPU
|
| 59 |
+
# Use torch.float16 for memory efficiency on CPU
|
| 60 |
+
model_kwargs = {
|
| 61 |
+
"torch_dtype": torch.float16,
|
| 62 |
+
"trust_remote_code": True,
|
| 63 |
+
"low_cpu_mem_usage": True,
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
# Try to use quantization if available, otherwise use standard loading
|
| 67 |
+
quant_config = get_quantization_config()
|
| 68 |
+
if quant_config is not None:
|
| 69 |
+
model_kwargs["quantization_config"] = quant_config
|
| 70 |
+
|
| 71 |
+
# Load model
|
| 72 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
| 73 |
+
model_name,
|
| 74 |
+
**model_kwargs
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Ensure model is in eval mode
|
| 78 |
+
_model.eval()
|
| 79 |
+
|
| 80 |
+
# Clear cache to free memory
|
| 81 |
+
gc.collect()
|
| 82 |
+
if torch.cuda.is_available():
|
| 83 |
+
torch.cuda.empty_cache()
|
| 84 |
+
|
| 85 |
+
return _tokenizer, _model
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def generate_stream(
|
| 89 |
+
prompt: str,
|
| 90 |
+
temperature: float = 0.7,
|
| 91 |
+
max_tokens: int = 200
|
| 92 |
+
) -> Generator[str, None, None]:
|
| 93 |
+
"""
|
| 94 |
+
Generate text in streaming fashion.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
prompt: Input prompt text
|
| 98 |
+
temperature: Sampling temperature
|
| 99 |
+
max_tokens: Maximum tokens to generate
|
| 100 |
+
|
| 101 |
+
Yields:
|
| 102 |
+
Text chunks as they are generated
|
| 103 |
+
"""
|
| 104 |
+
tokenizer, model = load_model()
|
| 105 |
+
|
| 106 |
+
# Tokenize input
|
| 107 |
+
inputs = tokenizer(
|
| 108 |
+
prompt,
|
| 109 |
+
return_tensors="pt",
|
| 110 |
+
add_special_tokens=False
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Move to same device as model
|
| 114 |
+
input_ids = inputs.input_ids.to(model.device)
|
| 115 |
+
|
| 116 |
+
# Generation parameters optimized for Nanbeige
|
| 117 |
+
generation_kwargs = {
|
| 118 |
+
"input_ids": input_ids,
|
| 119 |
+
"max_new_tokens": max_tokens,
|
| 120 |
+
"temperature": temperature,
|
| 121 |
+
"top_p": 0.95,
|
| 122 |
+
"do_sample": True,
|
| 123 |
+
"pad_token_id": tokenizer.pad_token_id or tokenizer.eos_token_id,
|
| 124 |
+
"eos_token_id": tokenizer.eos_token_id,
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
# Stream generation using generate with streamer
|
| 128 |
+
from transformers import TextIteratorStreamer
|
| 129 |
+
from threading import Thread
|
| 130 |
+
|
| 131 |
+
streamer = TextIteratorStreamer(
|
| 132 |
+
tokenizer,
|
| 133 |
+
skip_prompt=True,
|
| 134 |
+
skip_special_tokens=True
|
| 135 |
+
)
|
| 136 |
+
generation_kwargs["streamer"] = streamer
|
| 137 |
+
|
| 138 |
+
# Run generation in separate thread to enable streaming
|
| 139 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 140 |
+
thread.start()
|
| 141 |
+
|
| 142 |
+
generated_text = ""
|
| 143 |
+
for text in streamer:
|
| 144 |
+
generated_text += text
|
| 145 |
+
yield text
|
| 146 |
+
|
| 147 |
+
thread.join()
|
| 148 |
+
|
| 149 |
+
# Cleanup
|
| 150 |
+
gc.collect()
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def generate(
|
| 154 |
+
prompt: str,
|
| 155 |
+
temperature: float = 0.7,
|
| 156 |
+
max_tokens: int = 200
|
| 157 |
+
) -> str:
|
| 158 |
+
"""
|
| 159 |
+
Generate text non-streaming (full response).
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
prompt: Input prompt text
|
| 163 |
+
temperature: Sampling temperature
|
| 164 |
+
max_tokens: Maximum tokens to generate
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
Complete generated text
|
| 168 |
+
"""
|
| 169 |
+
tokenizer, model = load_model()
|
| 170 |
+
|
| 171 |
+
# Tokenize input
|
| 172 |
+
inputs = tokenizer(
|
| 173 |
+
prompt,
|
| 174 |
+
return_tensors="pt",
|
| 175 |
+
add_special_tokens=False
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
input_ids = inputs.input_ids.to(model.device)
|
| 179 |
+
|
| 180 |
+
# Generate
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
output_ids = model.generate(
|
| 183 |
+
input_ids,
|
| 184 |
+
max_new_tokens=max_tokens,
|
| 185 |
+
temperature=temperature,
|
| 186 |
+
top_p=0.95,
|
| 187 |
+
do_sample=True,
|
| 188 |
+
pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id,
|
| 189 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Decode only the new tokens
|
| 193 |
+
new_tokens = output_ids[0][len(input_ids[0]):]
|
| 194 |
+
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 195 |
+
|
| 196 |
+
# Cleanup
|
| 197 |
+
gc.collect()
|
| 198 |
+
|
| 199 |
+
return response
|
app/prompt.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app/prompt.py
|
| 2 |
+
"""
|
| 3 |
+
Prompt building utilities for Nanbeige model.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
SYSTEM_PROMPT = """Tu ek helpful assistant hai. Hamesha concise aur accurate jawab de.
|
| 7 |
+
- Agar kuch pata nahi, toh clearly bol "I don't know"
|
| 8 |
+
- Kabhi bhi mat bol ki tu ek AI model hai
|
| 9 |
+
- Sirf verified information share kar
|
| 10 |
+
- Hinglish mein baat kar"""
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def build_prompt(user_input: str) -> str:
|
| 14 |
+
"""
|
| 15 |
+
Build the final prompt by combining system prompt with user input.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
user_input: Raw user query/input
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
Formatted prompt string ready for model inference
|
| 22 |
+
"""
|
| 23 |
+
return f"{SYSTEM_PROMPT}\n\nUser: {user_input}\nAssistant:"
|
app/schemas.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app/schemas.py
|
| 2 |
+
"""
|
| 3 |
+
Pydantic schemas for API request/response validation.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from pydantic import BaseModel, Field
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class GenerationRequest(BaseModel):
|
| 10 |
+
"""Request schema for text generation endpoint."""
|
| 11 |
+
|
| 12 |
+
prompt: str = Field(
|
| 13 |
+
...,
|
| 14 |
+
min_length=1,
|
| 15 |
+
description="Input prompt text"
|
| 16 |
+
)
|
| 17 |
+
temperature: float = Field(
|
| 18 |
+
default=0.7,
|
| 19 |
+
ge=0.0,
|
| 20 |
+
le=2.0,
|
| 21 |
+
description="Sampling temperature"
|
| 22 |
+
)
|
| 23 |
+
max_tokens: int = Field(
|
| 24 |
+
default=200,
|
| 25 |
+
ge=1,
|
| 26 |
+
le=2048,
|
| 27 |
+
description="Maximum tokens to generate"
|
| 28 |
+
)
|
| 29 |
+
stream: bool = Field(
|
| 30 |
+
default=True,
|
| 31 |
+
description="Whether to stream the response"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class GenerationResponse(BaseModel):
|
| 36 |
+
"""Response schema for non-streaming generation."""
|
| 37 |
+
|
| 38 |
+
text: str = Field(
|
| 39 |
+
...,
|
| 40 |
+
description="Generated text response"
|
| 41 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# requirements.txt
|
| 2 |
+
fastapi==0.115.0
|
| 3 |
+
uvicorn[standard]==0.32.0
|
| 4 |
+
pydantic==2.9.0
|
| 5 |
+
transformers==4.46.0
|
| 6 |
+
torch==2.5.0
|
| 7 |
+
accelerate==1.0.0
|
| 8 |
+
sentencepiece==0.2.0
|
| 9 |
+
bitsandbytes==0.44.0
|
| 10 |
+
huggingface-hub==0.26.0
|
| 11 |
+
python-multipart==0.0.12
|
run.sh
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
# run.sh
|
| 3 |
+
# Production startup script for uvicorn server
|
| 4 |
+
|
| 5 |
+
exec uvicorn app.main:app \
|
| 6 |
+
--host 0.0.0.0 \
|
| 7 |
+
--port 7860 \
|
| 8 |
+
--workers 1 \
|
| 9 |
+
--loop uvloop \
|
| 10 |
+
--http httptools \
|
| 11 |
+
--proxy-headers \
|
| 12 |
+
--forwarded-allow-ips '*'
|