Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| """RAG_using_Llama3.ipynb | |
| Automatically generated by Colab. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1b-ZDo3QQ-axgm804UlHu3ohZwnoXz5L1 | |
| # install dependecies | |
| """ | |
| !pip install -q datasets sentence-transformers faiss-cpu accelerate | |
| from huggingface_hub import notebook_login | |
| notebook_login() | |
| """# embed dataset | |
| this is a slow procedure so you might consider saving your results | |
| """ | |
| from datasets import load_dataset | |
| dataset = load_dataset("KarthikaRajagopal/wikipedia-2") | |
| dataset | |
| from sentence_transformers import SentenceTransformer | |
| ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") | |
| # embed the dataset | |
| def embed(batch): | |
| # or you can combine multiple columns here, for example the title and the text | |
| information = batch["text"] | |
| return {"embeddings" : ST.encode(information)} | |
| dataset = dataset.map(embed,batched=True,batch_size=16) | |
| !pip install datasets | |
| from datasets import load_dataset | |
| dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded") | |
| # Push it to your Hugging Face repository | |
| dataset.push_to_hub("KarthikaRajagopal/wikipedia-2", revision="embedded") | |
| from datasets import load_dataset | |
| dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded") | |
| data = dataset["train"] | |
| data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset | |
| def search(query: str, k: int = 3 ): | |
| """a function that embeds a new query and returns the most probable results""" | |
| embedded_query = ST.encode(query) # embed new query | |
| scores, retrieved_examples = data.get_nearest_examples( # retrieve results | |
| "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings | |
| k=k # get only top k results | |
| ) | |
| return scores, retrieved_examples | |
| scores , result = search("anarchy", 4 ) # search for word anarchy and get the best 4 matching values from the dataset | |
| # the lower the better | |
| scores | |
| result['title'] | |
| print(result["text"][0]) | |
| """# chatbot on top of the retrieved results""" | |
| !pip install -q datasets sentence-transformers faiss-cpu accelerate bitsandbytes | |
| from sentence_transformers import SentenceTransformer | |
| ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") | |
| from datasets import load_dataset | |
| dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded") | |
| data = dataset["train"] | |
| data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset | |
| def search(query: str, k: int = 3 ): | |
| """a function that embeds a new query and returns the most probable results""" | |
| embedded_query = ST.encode(query) # embed new query | |
| scores, retrieved_examples = data.get_nearest_examples( # retrieve results | |
| "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings | |
| k=k # get only top k results | |
| ) | |
| return scores, retrieved_examples | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
| import torch | |
| model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| quantization_config=bnb_config | |
| ) | |
| terminators = [ | |
| tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| ] | |
| SYS_PROMPT = """You are an assistant for answering questions. | |
| You are given the extracted parts of a long document and a question. Provide a conversational answer. | |
| If you don't know the answer, just say "I do not know." Don't make up an answer.""" | |
| def format_prompt(prompt,retrieved_documents,k): | |
| """using the retrieved documents we will prompt the model to generate our responses""" | |
| PROMPT = f"Question:{prompt}\nContext:" | |
| for idx in range(k) : | |
| PROMPT+= f"{retrieved_documents['text'][idx]}\n" | |
| return PROMPT | |
| def generate(formatted_prompt): | |
| formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM | |
| messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] | |
| # tell the model to generate | |
| input_ids = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ).to(model.device) | |
| outputs = model.generate( | |
| input_ids, | |
| max_new_tokens=1024, | |
| eos_token_id=terminators, | |
| do_sample=True, | |
| temperature=0.6, | |
| top_p=0.9, | |
| ) | |
| response = outputs[0][input_ids.shape[-1]:] | |
| return tokenizer.decode(response, skip_special_tokens=True) | |
| def rag_chatbot(prompt:str,k:int=2): | |
| scores , retrieved_documents = search(prompt, k) | |
| formatted_prompt = format_prompt(prompt,retrieved_documents,k) | |
| return generate(formatted_prompt) | |
| rag_chatbot("what's anarchy ?", k = 2) | |